PII: S0040-4020(96)00931-3 # (Alkoxyallyl)sulfones as Enal β -Anion Equivalents. Synthesis of 5-Substituted 2(5H)-Furanones #### Donald Craig,* Christopher J. Etheridge and Alison M. Smith Department of Chemistry, Imperial College of Science, Technology and Medicine, London SW7 2AY, U.K. e-mail: dcraig@ic.ac.uk Abstact: 2(5H)-Furanones 14 may be prepared in a four-step sequence starting from (alkoxyallyl)sulfone 10 and aldehydes. Copyright © 1996 Elsevier Science Ltd #### INTRODUCTION As part of an ongoing programme seeking to exploit the diverse reactivity of the sulfone functional group¹ in the synthesis of oxygen and nitrogen heterocycles, we attempted the 5-endo-trig² cyclisation reaction of vinylic sulfone 1. Instead of the expected tetrahydrofuran product,³ the isomeric enol ether 2 was obtained in almost quantitative yield. It occurred to us that analogous bifunctional compounds 3 would exhibit varied chemistry because of the allylic positioning of the anion-stabilising and nucleofugal sulfonyl group with respect to the electron-rich enol ether.⁴ We reasoned that deprotonation of 3 would yield a nucleophilic anion which would react with electrophiles to give derivatives 4. Hydrolysis would take place with loss of an arylsulfinic acid and an alcohol to provide unsaturated carbonyl compounds 5. Thus, the conjugate base of 3 would be equivalent synthetically to the enal/enone β -anion synthon;⁵ the use of an aldehyde electrophile in such a sequence would yield intermediates possessing functionality suitable for heterocyclisation (Scheme 1). Herein we report in full⁶ on the successful application of this strategy to the synthesis of 5-substituted 2(5H)-furanones. #### RESULTS AND DISCUSSION Crucial to the viability of the proposed methodology was a ready source of the parent (alkoxyallyl)sulfone 10. This was made by base-catalysed isomerisation of vinylic sulfone 9, which was synthesised as a 2.5:1 *E:Z* mixture by Wadsworth-Emmons olefination of 2-benzyloxyethanal 8 with diethyl (4-tolylsulfonyl)methylphosphonate 6. Aldehyde 8 could be prepared on multi-gram scales by ozonolysis of allyl benzyl ether 7; the phosphonate coupling partner 6 was generated either *in situ* or in a separate step by phosphorylation of lithiated (tolylsulfonyl)methane. The isomerisation reaction of 9 provided 10 as a ca. 3:1 mixture of Z- and E-geometric isomers. Compound 10 was only moderately stable; on prolonged storage (> 1 week) decomposition was noticeable, and subsequent chemistry was best carried out on material freshly prepared from the vinylic sulfone precursor. Treatment of cold tetrahydrofuran solutions of 10 with *n*-butyllithium gave deeply red-coloured anion solutions which were almost completely decolourised on addition of aldehyde. Quenching of the resultant lithium alkoxides was effected by addition of a stoichiometric quantity of acetic acid at -78°C; substantial fragmentation back to aldehyde and sulfone was observed if the reaction mixtures were allowed to warm to temperatures greater than -30°C.^{5(v)} No γ-alkylation of lithiated 10 was ever observed in these coupling reactions, in stark contrast with the behaviour of analogous sulfide-containing species.⁸ Interestingly, of the four possible diastereomers of 11, only the Z-adducts were obtained, as 1:1 mixtures. We attribute this to intramolecular coordination of lithium in the anion of 10, which is possible only by a Z-oriented benzyloxy group (Figure 1).⁹ Conversion of 11 to the requisite lactol intermediates 12 as mixtures of all four diastereomers was accomplished in good to excellent yields by heating with sulfuric acid in aqueous acetonitrile (Table). Reagents and conditions: (i) O₃, CH₂Cl₂-*i*-PrOH, -78°C, then 0.5 eq. (H₂N)₂C=S; (ii) cat. *t*-BuOK, *t*-BuOH-THF; (iii) *n*-BuLi, RCHO, THF, -78°C, then AcOH; (iv) conc. H₂SO₄, 15% aq. MeCN, 65°C; (v) PDC, 4Å mol sieves, CH₂Cl₂; (vi) 0.6 eq. DBU, CH₂Cl₂, -78°C, then AcOH; (vii) TBDMSCl, cat. DMAP, Et₃N, CH₂Cl₂, 0°C. #### Scheme 2 Several features of the conversion of 11 into 12 are noteworthy. Firstly, the yield of the t-butyl-containing lactol 12d was noticeably lower than for the other examples, primarily because of competing formation of the E-hydroxyenal 15. We speculate that the bulky nature of the tert-butyl group is such that there is substantial relief of steric buttressing on sp³-sp² rehybridisation in the elimination step. Secondly, substrate 11h suffered cleavage of the acetate protecting group under the hydrolysis conditions to give the diol 16. Attempts to reprotect this compound as the primary monoacetate were low-yielding. Instead, 16 was converted selectively to the silyloxy lactol 12h by reaction with one equivalent of TBDMSCl under standard conditions. Thirdly, during the search for optimum conditions for the conversion of 11 into 12 it was observed that exposure of 11k to anhydrous acetic acid resulted in clean formation of the substituted naphthalene 17, with no evidence of formation of the alternative regiosiomer. Presumably compound 17 arises from intramolecular trapping of the enol ether-derived oxonium ion by the electron-rich methoxyphenyl ring in a Friedel-Crafts-type alkylation process, followed by loss of benzyl alcohol and water (Scheme 3). Finally, it was observed that two of the four diastereomers of 12 consistently exhibited in the ¹H nmr spectrum a sharp doublet (J ca. 12 Hz) corresponding to the OH proton. We speculate that this arises in the 2,4-syn isomers because of intramolecular H-bonding between one of the sulfone oxygen atoms and the lactol hydroxylic hydrogen atom such that the H-2-OH dihedral angle is close to 180° (Figure 2). $$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\$$ With the lactols 12 in hand, it remained only to effect oxidation to the γ-lactones 13 and elimination of the elements of tolylsulfinic acid to complete the synthesis of the butenolides 14. The first of these steps was easily effected by treatment with pyridinium dichromate in dichloromethane, giving 13 as mixtures of 3,4-syn and -anti diastereomers. Elimination of the elements of tolylsulfinic acid from 13 required more extensive optimisation. One of the more striking features of these reactions was the need for only 0.6 equivalents of DBU. Albeit small, this turnover of the base would imply that the driving-force for the elimination is sufficiently large to overcome the presumably very small equilibrium constant for the exchange of proton between DBUH+ and Ts-. The use of stoichiometric quantities of DBU caused substantial conversion of the initially-formed 2(5H)-furanones 14 into the apparently thermodynamically more stable 2(3H)-isomers. In the case of 13i only the undesired 2(3H)-furanone could be obtained, and the reactions of substrates 13j and 13k resulted in significant decomposition with none of the desired unsaturated lactones being formed. The latter two observations are at variance with those of Ghosez, 5(v) who has reported the synthesis of similar unsaturated lactones using conditions very similar to those tried here. Attempts to obtain furanones 14j and 14k using a wide variety of other bases (KHMDS, t-BuOK, KDA, NaH, i-Pr₂NEt, pyridine) failed, with highly-coloured reaction mixtures and crude products, and extensive decomposition being observed in all cases. The overall scheme for the synthesis of 2(5H)-furanones using the methodology presented above is summarised in Scheme 2 and in the Table. |
entry | R | % yield of 11 | % yield of 12 | % yield of 13 | % yield of 14 | |-------|--|-----------------|---------------|-----------------|-----------------| | a | n-C ₁₁ H ₂₃ | 99 | 85 | 83 | 91 | | b | i-C₃H ₇ | 90 | 95 | 87 | 87 | | c | <i>o</i> -C ₆ H ₁₁ | 85 | 95 | 86 | 95 | | d | t-C₄H ₉ | 95 | 59 | 85 | 93 | | e | (E,E) -Me $(CH)_4(CH_2)_4$ | 98 | 89 | 82 | 91 | | f | PhCH ₂ OCH ₂ | 98 | 99 | 81 | 93 | | g | PhCH ₂ O(CH ₂) ₂ | 96 | 87 | 47 ^a | 90 | | h | R'O(CH ₂) ₅ | 78 ^b | 64° | 86 ^d | 94 ^d | | i | CH₃CH:CH | 95 | 94 | 83 | 97 ^e | | j | C ₆ H ₅ | 94 | 92 | 89 | - | | k | 3-CH ₃ OC ₆ H ₄ | 95 | 93 | 87 | | 8 2(5*H*)-Furanone **14g** also was formed in this reaction (35%). 5 R' = Ac. 6 R' = TBDMS. The yield cited is for the two steps from adduct **11h**. 4 R' = TBDMS. 6 The 2(3*H*)-furanone was formed exclusively. Table. Synthesis of 2(5H)-furanones 14 from (alkoxyally) sulfone 10. #### **CONCLUSIONS** The results described herein demonstrate that (alkoxyallyl)sulfone 10 is a simple, readily available intermediate which may be combined with aldehydes in the efficient synthesis of 2(5H)-furanones 14. The chemistry is tolerated by a wide range of 5-substituents, with the most notable exceptions being aryl and vinyl groups. We have further explored the utility of 10 and more complex analogues in the high-yielding synthesis of polysubstituted furans.¹⁰ #### ACKNOWLEDGEMENTS We thank the SERC/EPSRC (Quota Studentships to C. J. E. and A. M. S.) and ICI plc (Strategic Research Initiative) for financial support of this research. We acknowledge support from the Wolfson Foundation for establishing the Wolfson Centre for Organic Chemistry in Medical Science. We gratefully acknowledge the SERC Mass Spectrometry Service Centre, University College of Swansea for providing high-resolution mass spectra. #### **EXPERIMENTAL** #### General procedures 1 H nmr spectra were recorded on either Bruker AM-500, Bruker DRX₃₀₀, Jeol GX-270Q or Bruker WM-250 spectometers, using residual isotopic solvent (CHCl₃, δ_{H} = 7.26 ppm) as an internal reference. Infra-red spectra were recorded on a Perkin-Elmer 881 or Mattson 5000 FTIR spectrometer. Mass spectra were recorded using VG-7070B or Jeol SX-102 instruments. Elemental combustion analysis were performed in the Imperial College Chemistry Department microanalytical laboratory. Melting points were measured on a Reichert hot stage apparatus and are uncorrected. Chromatography refers to flash column chromatography on Merck Kieselgel 60 (230-400 mesh). Tlc refers to thin-layer chromatography performed on pre-coated Merck Kieselgel 60 F₂₅₄ glass-backed plates and visualized with ultraviolet light (254 nm), iodine, acidic ammonium molybdate (IV), acidic ethanolic vanillin, aqueous potassium manganate(VII), 4,4'-bis(dimethylamino)benzhydrol in acetone and acidic methanolic 2,4-dinitrophenylhydrazine, as appropriate. Reactions were carried out at room temperature (rt) unless otherwise stated. Ether and THF were distilled from sodium-benzophenone ketyl; CH₂Cl₂ from phosphorus pentoxide; toluene and TMEDA from sodium wire and DMSO from calcium hydride. Where appropriate, all reagents were purified before use according to standard procedures. ¹¹ #### Preparation of 2-benzyloxyethanal (8). Ozone (O₂ flow rate $3 \, 1 \, h^{-1}$) was passed through a solution of 3-benzyloxypropene (7) (42.46 g, 0.287 mol) in a mixture of dry CH₂Cl₂ (400 ml) and propan-2-ol (100 ml) at -78°C until a faint pale blue colour persisted. Tlc after 2 h showed complete formation of the hydroperoxide intermediate and the pale yellow solution was purged with oxygen (10 min) and then nitrogen (10 min). Thiourea (10.91 g, 0.143 mol) was added and the resulting suspension was allowed slowly to warm to rt. After 15 h the colourless suspension was diluted with ether (200 ml) and filtered through a short silica gel plug. Concentration under reduced pressure followed by chromatography (50% ether–petrol), gave 2-benzyloxyethanal (8) (30.78 g, 90%) as a colourless, viscous liquid with a persistent odour; R_f 0.25, 50% ether–petrol; v_{max} (film) 2869, 1735, 1604, 1497, 1455, 1374, 1114, 912, 742 and 700 cm⁻¹; δ_H (250 MHz) 9.65 (1H, s, CHO), 7.43-7.21 (5H, m, Ph), 4.6 (2H, s, H-2) and 4.05 (2H, s, CH₂Ph); m/z (EI) 150 [M]⁺, 149 [M-H]⁺, 121 [M-CHO]⁺, 107 [BnO]⁺, 91 [C₇H₇]⁺, 65 [C₅H₅]⁺; in agreement with previous data.¹² #### Preparation of 3-benzyloxy-1-(4-tolylsulfonyl)propene (9). n-BuLi (44.4 ml of a 2.5M solution in hexanes, 111 mmol, 1.1 eq) was added to a solution of diethyl (4tolylsulfonyl)methylphosphonate (6) (30.9 g, 101 mmol) in THF (336 ml) at -78°C under a nitrogen atmosphere. The resultant golden-yellow solution was allowed to stir for 30 min at -78°C after which time a solution of 2-benzyloxyethanal (8) (14.38 g, 95.8 mmol, 0.95 eq) in THF (40 ml plus 15 ml rinse) was added via cannula and the pale yellow reaction mixture allowed to warm to rt. After 1 h the solution was quenched with AcOH (15.1 ml of a 1M solution in THF, 15.1 mmol, 0.15 eq), causing the colour to fade. Water (250 ml) was added to the reaction mixture, the organic phase separated and the aqueous layer extracted with ether (3 x 300 ml). The organic layers were washed with water (3 x 300 ml), brine (300 ml), dried (MgSO₄) and the solvents evaporated under reduced pressure. The resulting yellow oil was purified by chromatography (40% ether-petrol), to give 3-benzyloxy-1-(4-tolylsulfonyl)propene (9) (27.58 g, 90%) as a 2.5:1 mixture of the Eand Z-isomers. Small amounts of each isomer were separated; Z-isomer; R_f 0.37, 50% ether-petrol; v_{max} (film) 3035, 2924, 2858, 1598, 1453, 1365, 1310, 1141, 811 and 699 cm⁻¹; δ_H (270 MHz) 7.74 (2H, d, J 9.0 Hz, H-2 and H-6 of Ts), 7.46-7.24 (7H, m, H-3 and H-5 of Ts, Ph), 6.41 (1H, dt, J 11.5 and 4.5 Hz, H-2), 6.26 (1H, dt, J 11.5 and 2.5 Hz, H-1), 4.73 (2H, dd, J 4.5 and 2.5 Hz, H-3), 4.53 (2H, s, CH₂Ph) and 2.43 (3H, s, Me of Ts); m/z (EI) 303 [M+H]+, 213, 211 [M-CH₂Ph]+, 196, 139, 107, 91, 77 (Found: [M-CH₂Ph]+, 211.0423. C₁₇H₁₈O₃S requires [M-CH₂Ph]⁺, 211.0423; E-isomer; R_f 0.28, 50% ether-petrol; v_{max} (film) 3063, 2924, 2858, 1641, 1598, 1453, 1365, 1310, 1201, 1141 and 811 cm $^{-1}$; δ_H (270 MHz) 7.77 (2H, d, J 9.5 Hz, H-2 and H-6 of Ts), 7.46-7.24 (7H, m, H-3 and H-5 of Ts, Ph), 6.97 (1H, dt, J 14.0 and 4.5 Hz, H-2), 6.66 (1H, dt, J 14.0 and 2.5 Hz, H-1), 4.53 (2H, s, CH₂Ph), 4.20 (2H, dd, J 4.5 and 2.5 Hz, H-3) and CH₂Ph]⁺, 211.0423. C₁₇H₁₈O₃S requires [M-CH₂Ph]⁺, 211.0423). ## Preparation of 3-benzyloxy-1-(4-tolylsulfonyl)propene (9): formation of Wadsworth-Emmons reagent in situ. A solution of (4-tolylsulfonyl)methane (8.67 g, 50.9 mmol) in THF (20 ml plus 5 ml rinse) was added *via* cannula to a solution of LDA (previously prepared from *i*-Pr₂NH (15.7 ml, 112 mmol, 2.2 eq) and *n*-BuLi (44.8 ml of a 2.5M solution in hexanes, 112 mmol, 2.2 eq)) in THF (81 ml) and TMEDA (20 ml) at -78°C under a nitrogen atmosphere. The resultant golden-yellow solution was allowed to stir for 30 min at -78°C after which time diethyl chlorophosphate (7.36 ml, 50.9 mmol) was added dropwise *via* syringe, causing the reaction mixture gradually to become bright lemon-yellow in colour. After stirring for 1 h at -78°C, a solution of 2-benzyloxyethanal (7.26 g, 48.4 mmol, 0.95 eq) in THF (20 ml plus 10 ml rinse) was added *via* cannula and the pale yellow reaction mixture allowed to warm to rt. After 1 h the solution was quenched with AcOH (10.2 ml of a 1M solution in THF, 10.2 mmol, 0.2 eq) causing the colour to fade. Water (100 ml) was added to the reaction mixture, the organic phase was separated and the aqueous layer extracted with ether (3 x 200 ml). The organic layers were washed with water (3 x 200 ml), brine (200 ml), dried (MgSO₄) and the solvents evaporated under reduced pressure. The resulting yellow oil was purified by chromatography (40% ether–petrol), to give 3-benzyloxy-1-(4-tolylsulfonyl)propene (9) (13.79 g, 90%) identical in every way to the material prepared as described above. #### Preparation of 3-benzyloxy-1-(4-tolylsulfonyl)-2-propene (10). To a solution of 3-benzyloxy-1-(4-tolylsulfonyl)propene (9) (5.82 g, 19.2 mmol) in THF (192 ml) and t-BuOH (36.3 ml, 385 mmol, 20 eq) at room temperature was added t-BuOK (1.92 ml of a 1M solution in THF, 1.92 mmol, 0.1 eq) causing the solution to turn pale orange and gradually darken to a deep red. After stirring for 5 min the solution was quenched with AcOH (1.92 ml of a 1M solution in THF, 1.92 mmol, 0.1 eq), followed by saturated aqueous NaHCO₃ (50 ml) and water (50 ml). The organic layer was separated, the aqueous layer extracted with ether (3 x 200 ml), the combined organic layers washed with saturated aqueous NaHCO₃ (150 ml), water (150 ml), brine (150 ml), dried (K_2CO_3) and concentrated under reduced pressure to give a pale yellow solid. This was purified by chromatography (30% ether–petrol), to give a 3:1 Z:E mixture of 3-benzyloxy-1-(4-tolylsulfonyl)-2-propene (10) (5.79 g, 100%) as a colourless, crystalline solid; R_f 0.25, 50% ether–petrol; v_{max} (CH₂Cl₂) 2926, 1658, 1597, 1461, 1317, 1176, 1086, 1041, 896, 736 and 699 cm⁻¹; δ_H (270 MHz) 7.78 (2H, d, J 8.0 Hz, H-2 and H-6 of Ts, Z-isomer), 7.69 (2H, d, J 8.0 Hz, H-2 and H-6 of Ts, E-isomer), 7.38-7.06 (14H, m, H-3 and H-5 of Ts and Ph, both isomers), 6.35 (1H, br d, J 12.5 Hz, H-1, E-isomer), 6.22 (1H, dt, J 6.0 and 1.0 Hz, H-1. Z-isomer), 4.79 (1H, dt, J 12.5 and 8.0 Hz, H-2, E-isomer), 4.75 (2H, s, CH₂Ph, E-isomer), 4.60 (2H, s, J Hz, CH₂Ph, Z-isomer), 4.51 (1H, td, J 8.0 and 6.0 Hz, H-2, Z-isomer), 3.95 (2H, dd, J 8.0 and 1.0 Hz, H-3, Z-isomer), 3.64 (2H, dd, J 8.0 and 1.0 Hz, H-3, E-isomer), 2.44 (3H, s, Me of Ts, E-isomer) and 2.43 (3H, s, Me of Ts, Z-isomer); m/z (EI) 302 [M]⁺, 258, 246, 214, 156 [TsH]⁺, 147 [M-Ts]⁺, 124, 108 [BnOH]⁺, 91 [C₇H₇]⁺ (Found (CI): [M+NH₄]⁺, 320.1320.
C₁₇H₁₈O₃S requires [M+NH₄]⁺, 320.1320). #### Preparation of 1-benzyloxy-3-(4-tolylsulfonyl)-1-pentadecen-4-ol (11a). To a stirred solution of 3-benzyloxy-1-(4-tolylsulfonyl)-2-propene (0.512 g, 1.71 mmol) in THF (17.1 ml) at -78°C under a nitrogen atmosphere was added n-BuLi (0.752 ml of a 2.5M solution in hexanes, 1.88 mmol, 1.1 eq) resulting in the formation of a deep red solution. After stirring for 30 min a solution of dodecanal (0.377 ml, 1.71 mmol) in THF (5 ml plus 2 ml rinse) was slowly added via cannula causing the colour to become pale yellow. After stirring for 10 min the reaction mixture was quenched by the addition of AcOH (1.88 ml of a 1M solution in THF, 1.88 mmol, 1.1 eq) causing the solution to become colourless, and was allowed to warm to rt. Water (10 ml) was added, the organic layer was separated and the aqueous layer extracted with ether (3 x 30 ml). The combined organic layers were washed with water (30 ml), brine (30 ml), dried (K₂CO₃) and the solvents evaporated under reduced pressure to give a pale yellow liquid. This was purified by chromatography (5%→50% ether-petrol), to yield a >30:>20:<1:<1 mixture of Z:Z:E:E diastereomers of 1benzyloxy-3-(4-tolylsulfonyl)-1-pentadecen-4-ol (11a) (0.819 g, 99%) as a colourless, oily solid; R_f 0.35-0.20, 50% ether-petrol; v_{max} (film) 3525, 3034, 2927, 2855, 1661, 1599, 1498, 1460, 1403, 1369, 1295, 1214, 1142, 1081, 816 and 738 cm⁻¹; δ_H (270 MHz) 7.80-7.72 (4H, m, H-2 and H-6 of Ts, both isomers), 7.40-7,24 and 7.09-6.99 (14H, m, H-3 and H-5 of Ts and Ph, all isomers), 6.25 (1H, d, J 6.0 Hz, H-1, minor diast), 6.13 (1H, d, J 6.0 Hz, H-1, minor diast), 4.73 (1H, dd, J 10.5 and 6.0 Hz, H-2, major diast), 4.57 (1H, d, J 12.5 Hz, CH₂Ph, minor diast), 4.54 (1H, d, J 12.5 Hz, CH₂Ph, major diast), 4.52-4.46 (2H, m, CH₂Ph, minor diast and H-4, minor diast), 4.42 (1H, d, J 12.5 Hz, CH₂Ph, major diast), 4.33 (1H, d, J 10.5 and 8.5 Hz, H-3, major diast), 4.29-4.22 (2H, m, H-4, major diast and H-2, minor diast), 4.19 (1H, br d, J 11.0 Hz, H-3, minor diast), 2.43 (3H, s, Me of Ts, minor diast), 2.42 (3H, s, Me of Ts, major diast), 1.60-1.16 (40H, m, H-5 to H-14, both isomers) and 0.91-0.85 (6H, m, H-15, both isomers); m/z (EI) 330 [M+H-Ts]+, 288, 246, 239, 222, 124, 108 [BnOH]+, 91 [C₇H₉]+, 51 (Found: [M+H-Ts]+, 330.2560. C₂₉H₄₂O₄S requires [M+H-Ts]+, 330.2559). #### Preparation of 6-benzyloxy-2-methyl-4-(4-tolylsulfonyl)-5-hexen-3-ol (11b). This was carried out analogously to the preparation of 1-benzyloxy-3-(4-tolylsulfonyl)-1-pentadecen-4-ol on a 1.74 mmol scale starting from 3-benzyloxy-1-(4-tolylsulfonyl)-2-propene and isobutyraldehyde to give, after chromatography (40% ether–petrol), a >40:>20:<1:<1 mixture of Z:Z:E:E diastereomers of 6-benzyloxy-2-methyl-4-(4-tolylsulfonyl)-5-hexen-3-ol (11b) (0.586 g, 90%) as a colourless, oily solid; R_f 0.31, 0.24 and 0.19, 50% ether–petrol; v_{max} (film) 3515, 3060, 3030, 2959, 2927, 2871, 1657, 1595, 1452, 1365, 1284, 1215, 1126, 1063, 814 and 740 cm⁻¹; δ_H (270 MHz) 7.76 (2H, d, J 8.5 Hz, H-2 and H-6 of Ts, major diast), 7.75 (2H, d, J 8.5 Hz, H-2 and H-6 of Ts, minor diast), 7.40-7.24 and 7.10-6.98 (14H, m, H-3 and H-5 of Ts and Ph, both diast), 6.22 (1H, d, J 6.0 Hz, H-6, minor diast), 6.13 (1H, d, J 6.0 Hz, H-6, major diast), 4.75 (1H, dd, J 10.5 and 6.0 Hz, H-5, minor diast), 4.52 (1H, d, J 12.0 Hz, CH₂Ph, major diast), 4.44 (1H, d, J 12.5 Hz, CH₂Ph, minor diast), 4.36 (1H, d, J 10.5 Hz, H-4, minor diast), 4.35 (1H, dd, J 10.5 and 9.5 Hz, H-4, major diast), 4.33 (1H, d, J 12.0 Hz, CH₂Ph, major diast), 4.20 (1H, dd, J 10.5 and 6.0 Hz, H-5, major diast), 4.15 (1H, dd, J 9.5 and 2.5 Hz, H-3, major diast), 4.10 (1H, d, J 9.0 Hz, H-3, minor diast), 2.43 (3H, s, Me of Ts, minor diast), 2.42 (3H, s, Me of Ts, major diast), 1.78 (1H, septuple d, J 7.0 and 2.5 Hz, H-2, major diast), 1.65 (1H, m, H-2, minor diast), 1.03 (3H, d, J 7.0 Hz, H-1, major diast), 1.01 (3H, d, J 6.5 Hz, H-1, minor diast), 0.80 (3H, d, J 7.0 Hz, H-1, major diast), 0.78 (3H, d, J 6.5 Hz, H-1, minor diast); m/z (CI) 392 [M+NH₄]+, 375 [M+H]+, 374 [M+NH₄-H₂O]+, 331 [M-i-Pr]+, 278, 265, 239, 157, 111, 108 [BnOH]+, 95, 91 [C₇H₇]+ (Found: [M+NH₄]+, 392.1896). ### Preparation of 4-benzyloxy-1-cyclohexyl-2-(4-tolylsulfonyl)-3-buten-1-ol (11c). This was carried out analogously to the preparation of 1-benzyloxy-3-(4-tolylsulfonyl)-1-pentadecen-4-ol on a 2.39 mmol scale starting from 3-benzyloxy-1-(4-tolylsulfonyl)-2-propene and cyclohexanecarboxaldehyde to give, after chromatography (30% ether–petrol), a >60:>20:>1:>1 mixture of *Z:Z:E:E* diastereomers of 4-benzyloxy-1-cyclohexyl-2-(4-tolylsulfonyl)-3-buten-1-ol (11c) (0.848 g, 85%) as a pale yellow oil; R_f 0.33, 0.26 and 0.22, 50% ether–petrol; v_{max} (film) 3510, 3058, 3028, 2924, 2850, 1655, 1595, 1493, 1448, 1399, 1300, 1185, 1144, 1083, 913, 890 and 737 cm⁻¹; δ_H (270 MHz) 7.80-7.68 (4H, m, H-2 and H-6 of Ts, both diast), 7.43-7.20 (14H, m, H-3 and H-5 of Ts and Ph, both diast), 6.22 (1H, d, J 5.5 Hz, H-4, minor diast), 6.10 (1H, d, J 5.5 Hz, H-4, major diast), 4.71 (1H, dd, J 16.0 and 7.0 Hz, H-3, major diast), 4.57-4.30 (6H, m, PhCH₂, both diast and H-3 and H-2, minor diast), 4.17 (1H, dd, J 11.0 and 5.5 Hz, H-1, major diast), 4.08 (1H, d, J 9.0 Hz, H-2, major diast), 3.96 (1H, d, J 9.0 Hz, H-1, minor diast), 2.40 (3H, s, Me of Ts, major diast), 2.39 (3H, s, Me of Ts, minor diast) and 1.85-0.93 (22H, m, c-C6H₁₁, both diast); m/z (CI) 432 [M+NH₄]⁺, 414 [M+H]⁺, 396 [M-H₂O]⁺, 305, 241, 223, 157, 151, 139, 133, 124, 107 [BnO]⁺, 91 [C₇H₇]⁺ (Found: [M+NH₄]⁺, 432.2210. C₂4H₃₀O₄S requires [M+NH₄]⁺, 432.2209). #### Preparation of 6-benzyloxy-2,2-dimethyl-4-(4-tolylsulfonyl)-5-hexen-3-ol (11d). This was carried out analogously to the preparation of 1-benzyloxy-3-(4-tolylsulfonyl)-1-pentadecen-4-ol on a 3.89 mmol scale starting from 3-benzyloxy-1-(4-tolylsulfonyl)-2-propene and pivalaldehyde to give, after chromatography (50% ether–petrol), a >20:>20:<1:<1 mixture of *Z.Z.E.E* diastereomers of 6-benzyloxy-2,2-dimethyl-4-(4-tolylsulfonyl)-5-hexen-3-ol (**11d**) (1.44 g, 95%) as a colourless oil; R_f 0.33 and 0.23, 50% ether–petrol; v_{max} (film) 3510, 2957, 1657, 1597, 1454, 1366, 1287, 1140, 1068, 815, 736 and 700 cm⁻¹; δ_H (270 MHz) 7.80-7.72 (4H, m, H-2 and H-6 of Ts, both diast), 7.42-7.21 and 7.10-7.02 (14H, m, H-3 and H-5 of Ts and Ph, both diast), 6.10 (1H, d, J 6.0 Hz, H-6), 6.02 (1H, d, J 5.5 Hz, H-6), 4.83 (1H, dd, J 10.5 and 6.5 Hz, H-5), 4.72 (1H, dd, J 12.5 and 5.5 Hz, H-5), 4.56-4.20 (7H, m, CH₂Ph, both diast, 2 x H-4 and H-3), 4.05 (1H, dd, J 10.5 and 6.5 Hz, H-3), 2.45 (3H, s, Me of Ts), 2.43 (3H, s, Me of Ts), 0.95 (9H, s, H-1) and 0.92 (9H, s, H-1); m/z (EI) 331 [M-t-Bu]+, 297 [M-Bn]+, 278, 259, 246, 231, 214, 139, 124, 109 [BnOH]+, 91 [C₇H₇]+, 79 (Found: [M-t-Bu]+, 331.1004. C₂₂H₂₈O₄S requires [M-t-Bu]+, 331.1004). #### Preparation of (9E,11E)-1-benzyloxy-3-(4-tolylsulfonyl)-1,9,11-tridecatrien-4-ol (11e). This was carried out analogously to the preparation of 1-benzyloxy-3-(4-tolylsulfonyl)-1-pentadecen-4-ol on a 4.91 mmol scale starting from 3-benzyloxy-1-(4-tolylsulfonyl)-2-propene and (E,E)-6,8-decadienal¹³ to give, after chromatography (30% \rightarrow 50% ether–petrol), a >40:>20:<1:<1 mixture of Z:Z:E:E diastereomers of (9E,11E)-1-benzyloxy-3-(4-tolylsulfonyl)-1,9,11-tridecatrien-4-ol (11e) (2.20 g, 98%) as a colourless oil; R_f 0.44, 0.33, 0.28 and 0.18, 50% ether–petrol; v_{max} (film) 3514, 3015, 2926, 1655, 1599, 1447, 1369, 1287, 1136, 1073, 990, 812 and 742 cm⁻¹; δ_H (270 MHz) 7.81-7.61 (4H, m, H-2 and H-6 of Ts, both diast), 7.38-7.21 (14H, m, H-3 and H-5 of Ts and Ph, both diast), 6.25 (1H, d, J 6.1 Hz, H-1, minor diast), 6.13 (1H, d, J 6.0 Hz, H-1, major diast), 6.07-5.83 (2H, m, H-10 and H-11, both diast) 5.59-5.47 (2H, m, H-9 and H-12, both diast), 4.73 (1H, dd, J 10.0 and 6.0 Hz, H-2, major diast), 4.60-4.16 (9H, m, PhCH₂, H-3 and H-4, both diast and H-2, minor diast), 4.02 (1H, br s, OH, major diast), 3.12 (1H, br s, OH, minor diast), 2.43 (3H, s, Me of Ts, minor diast) 2.42 (3H, s, Me of Ts, major diast), 2.06-2.00 (4H, m, H-5, both diast), 1.79 (3H, d, J 6.5 Hz, H-13, major diast), 1.72 (3H, d, J 6.5 Hz, H-13, minor diast), 1.59-1.21 (12H, m, H-6 to H-8, both diast); m/z (CI) 364 [M+NH₄-H₂O]⁺, 363 [M-Bn]⁺, 346 [M-BnOH]⁺, 299 [M-Ts]⁺, 281 [M-Ts-H₂O]⁺, 256, 246, 190 [M-Ts-OBn]⁺, 124, 108, 94, 91 [C₇H₇]⁺ (Found: [M+NH₄-H₂O]⁺, 364.1946). ## Preparation of 1,5-bis(benzyloxy)-3-(4-tolylsulfonyl)-4-penten-2-ol (11f). This was carried out analogously to the preparation of 1-benzyloxy-3-(4-tolylsulfonyl)-1-pentadecen-4-ol on a 1.19 mmol scale starting from 3-benzyloxy-1-(4-tolylsulfonyl)-2-propene and 2-benzyloxyethanal to give, after chromatography (40% ether-petrol), a 5:5:1:1 mixture of Z:Z:E:E diastereomers of 1,5-bis(benzyloxy)-3-(4-tolylsulfonyl)-4-penten-2-ol (11f) (0.528 g, 98%) as a colourless oil; Rf 0.40 and 0.35, 80% ether-petrol; v_{max} (film) 3500, 3031, 2923, 1660, 1598, 1497, 1454, 1366, 1302, 1208, 1147, 816, 740, 699 and 667 cm ¹; δ_H (270 MHz) 7.76 (4H, d, J 8.5 Hz, H-2 and H-6 of Ts, both Z-diast), 7.68 (2H, d, J 8.5 Hz, H-2 and H-6 of Ts, E-diast), 7.64 (2H, d, J 8.5 Hz, H-2 and H-6 of Ts, E-diast), 7.48-7.20 and 7.09-6.98 (48H, m, H-3 and H-5 of Ts and Ph, all diast), 6.28 (1H, d, J 6.0 Hz, H-5, Z-diast), 6.20 (1H, d, J 12.5 Hz, H-5, E-diast), 6.17 (1H, d, J 12.5 Hz, H-5, E-diast) 6.14 (1H, d, J 6.0 Hz, H-5, Z-diast), 4.95 (H, dd, J 12.5 and 10.5 Hz, H-4, E-diast), 4.82-4.36 (26H, m, CH₂Ph and H-2, all diast, 3 x H-4, 2 x Z-diast and 1 x E-diast, 2 x OH, Zdiast and E-diast and H-3, Z-diast), 4.29 (1H, dd, J 10.5 and 6.0 Hz, H-3, Z-diast, 4.11 (1H, d, J 0.5 Hz, OH, E-diast), 3.95 (1H, br s, OH, Z-diast), 3.72 (1H, dd, J 10.5 and 8.5 Hz, H-3, E-diast), 3.66 (1H, dd, J 10.0 and 3.0 Hz, H-1, Z-diast), 3.63-3.61 (3H, m, H-1, 2 x Z-diast and E-diast), 3.58 (1H, dd, J 10.5 and 1.5 Hz, H-1,
E-diast), 3.51 (1H, dd, J 10.0 and 5.0 Hz, H-1, Z-diast), 3.50-3.44 (3H, m, 2 x H-1, E-diast and Zdiast and H-3, E-diast), 2.44 (3H, s, Me of Ts, E-diast), 2.43 (3H, s, Me of Ts, E-diast), 2.41 (3H, s, Me of Ts, Z-diast), 2.40 (3H, s, Me of Ts, Z-diast); m/z (EI) 345 [M-OBn]+, 189, 181, 163, 150, 136, 124, 107 [BnO]⁺, 91 [C₇H₇]⁺ (Found: [M-OBn]⁺, 345.1160. C₂₆H₂₈O₅S requires [M-OBn]⁺, 345.1161). #### Preparation of 1,6-bis(benzyloxy)-4-(4-tolylsulfonyl)-5-hexen-3-ol (11g). This was carried out analogously to the preparation of 1-benzyloxy-3-(4-tolylsulfonyl)-1-pentadecen-4-ol on a 4.93 mmol scale starting from 3-benzyloxy-1-(4-tolylsulfonyl)-2-propene and 3-benzyloxypropanal to give, after chromatography (40% \rightarrow 80% ether–petrol), a >20:>20:<1:<1 mixture of *Z:Z:E:E* diastereomers of 1,6-bis(benzyloxy)-4-(4-tolylsulfonyl)-5-hexen-3-ol (11g) (2.22 g, 96%) as a colourless oil; R_f 0.18 and 0.11, 50% ether–petrol; v_{max} (film) 3503,3030, 2865, 1956, 1658, 1598, 1494, 1453, 1366, 1287, 1144, 816, 740, 701 and 667 cm⁻¹; δ _H (500 MHz) 7.79-7.72 (4H, m, H-2 and H-6 of Ts), 7.38-7.00 (24H, m, H-3 and H-5 of Ts and Ph, both diast), 6.27 (1H, d, J 6.0 Hz, H-6), 6.16 (1H, d, J 6.0 Hz, H-6), 4.76-4.34 (10H, m, CH₂Ph, H-3, H-5 and OH, both diast), 4.29 (1H, dd, J 10.5 and 6.0 Hz, H-4), 4.23 (1H, dd, J 10.5 and 1.0 Hz, H-4), 3.83-3.53 (4H, m, H-1, both diast), 2.44 (3H, s, Me of Ts), 2.42 (3H, s, Me of Ts) and 2.07-1.63 (4H, m, H-2, both diast); m/z (EI) 358 [M-BnOH]+, 278, 246, 214, 202, 172, 139, 124, 100, 91 [C₇H₇]+, 81 (Found: [M-BnOH]+, 358.1239). ## Preparation of 1-acetoxy-9-benzyloxy-7-(4-tolylsulfonyl)-8-nonen-6-ol (11h). This was carried out analogously to the preparation of 1-benzyloxy-3-(4-tolylsulfonyl)-1-pentadecen-4-ol on a 2.54 mmol scale starting from 3-benzyloxy-1-(4-tolylsulfonyl)-2-propene and 6-acetoxyhexanal to give, after chromatography ($30\% \rightarrow 70\%$ ether-petrol), a >40:>20:<1:<1 mixture of Z:Z:E:E diastereomers of 1-acetoxy-9-benzyloxy-7-(4-tolylsulfonyl)-8-nonen-6-ol (**11h**) (0.913 g, 78%) as a colourless oil; R_f 0.31, 0.27 and 0.22, 70% ether–petrol; v_{max} (film) 3505, 2939, 2864, 1735, 1660, 1597, 1494, 1457, 1367, 1244, 1142, 1080, 817, 741, 703 and 664 cm⁻¹; δ_H (270 MHz) 7.72 (4H, m, H-2 and H-6 of Ts, both diast), 7.38-7.16 and 7.06-6.93 (14H, m, H-3 and H-5 of Ts, Ph), 6.23 (1H, d, J 6.5 Hz, H-9, minor diast), 6.12 (1H, d, J 6.5 Hz, H-9, major diast), 4.69 (1H, dd, J 11.0 and 6.5 Hz, H-8, major diast), 4.60-4.51 (3H, m, H-6, major diast and CH₂Ph, minor diast), 4.47 (1H, d, J 14.5 Hz, CH₂Ph, major diast), 4.38 (1H, d, J 14.5 Hz, CH₂Ph, major diast), 4.34-4.10 (4H, m, H-7, both diast), H-6 and H-8, minor diast), 4.00 (4H, m, H-1, both diast), 3.44 (4H, dd, J 13.0 and 6.5 Hz, H-5, both diast), 2.40 (3H, s, Me of Ts) 2.39 (3H, s, Me of Ts), 2.03 (6H, s, Me of ester, both diast), 1.67-1.46 (4H, m, H-8, both diast), 1.43-1.24 (4H, m, H-7, both diast) and 1.22-1.10 (4H, m, H-6, both diast); m/z (CI) 478 [M+NH₄]+, 461 [M+H]+, 318, 278, 246, 214, 197, 157, 139, 137, 107 [BnO]+, 91 [C₇H₇]+, 79, 43 (Found: [M+NH₄]+, 478.2260. C₂₅H₃₂O₆S requires [M+NH₄]+, 478.2263). #### Preparation of 1-benzyloxy-3-(4-tolylsulfonyl)-1,5-heptadien-4-ol (11i). This was carried out analogously to the preparation of 1-benzyloxy-3-(4-tolylsulfonyl)-1-pentadecen-4-ol on a 1.66 mmol scale starting from 3-benzyloxy-1-(4-tolylsulfonyl)-2-propene and crotonaldehyde to give, after chromatography (30% ether-petrol), a 7:7:1:1 mixture of Z:Z:E:E diastereomers of 1-benzyloxy-3-(4tolylsulfonyl)-1,5-heptadien-4-ol (11i) (0.590 g, 95%) as a pale yellow oil; Rf 0.16,0.13 and 0.09, 50% etherpetrol; v_{max} (film) 3494, 3059, 3029, 2919, 1656, 1595, 1491, 1449, 1399, 1365, 1285, 1212, 1183, 1142, 1082, 1026, 966, 814, 738 and 700 cm⁻¹; δ_H (500 MHz) 7.77-7.62 (8H, m, H-2 and H-6 of Ts all diast), 7.37-7.00 (28H, m, H-3 and H-5 of Ts and Ph, all diast), 6.24 (1H, d, J 6.0 Hz, H-1, Z-diast), 6.18 (1H, d, J 13.0 Hz, H-1, E-diast), 6.11 (1H, d, J 6.0 Hz, H-1, Z-diast), 6.09 (1H, d, J 13.0 Hz, H-1, E-diast), 5.77-5.69 (4H, m, H-1, H-6, all diast), 5.42-5.34 (4H, m, H-5, all diast), 4.98 (1H, dd, J 13.0 and 10.5 Hz, H-4, E-diast), 4.92 (1H, dd, J 12.5 and 6.5 Hz, H-4, Z-diast), 4.75-4.69 (2H, m, H-4, E- and Z-diast), 4.66 (1H, t, J 7.5 Hz, H-3, Z-diast), 4.53 (2H, s, CH₂Ph, Z-diast), 4.50 (2H, s, CH₂Ph, E-diast), 4.45 (2H, s, CH₂Ph, Zdiast), 4.42 (2H, s, CH₂Ph, E-diast), 4.41 (1H, dd, J 13.0 and 7.5 Hz, H-2, E-diast), 4.35 (1H, dd, J 11.0 and 8.5 Hz, H-2, Z-diast), 4.25 (1H, dd, J 10.5 and 1.0 Hz, H-2, Z-diast), 4.22 (1H, dd, J 10.5 and 3.0 Hz, H-2, E-diast), 4.18 (1H, dd, J 10.5 and 6.0 Hz, Z-diast), 4.04-3.96 (3H, m, OH, 2 x E- and 1 x Z-diast), 3.92 (1H, d, J 9.0 Hz, OH, Z-diast), 3.47 (1H, dd, J 11.0 and 8.0 Hz, H-3, E-isomer), 3.38 (1H, dd, J 10.5 and 3.0 Hz, H-3, E-isomer), 2.45 (3H, s, Me of Ts, E-isomer), 2.43 (3H, s, Me of Ts), 2.42 (3H, s, Me of Ts, Zisomer), 2.41 (3H, s, Me of Ts, Z-isomer) and 1.75-1.64 (12H, m, H-7, all isomers); m/z (CI) 390 [M+NH₄]⁺, 373 [M+H]⁺, 354 [M-H₂O]⁺, 278, 246, 214, 163, 139, 124, 108 [BnOH]⁺, 91 [C₇H₇]⁺ (Found: $[M+NH_4]^+$, 390.1739. $C_{21}H_{24}O_4S$ requires $[M+NH_4]^+$, 390.1739). ## Preparation of 1-benzyloxy-4-phenyl-3-(4-tolylsulfonyl)-1-buten-4-ol (11j). This was carried out analogously to the preparation of 1-benzyloxy-3-(4-tolylsulfonyl)-1-pentadecen-4-ol on a 1.47 mmol scale starting from 3-benzyloxy-1-(4-tolylsulfonyl)-2-propene and benzaldehyde to give, after chromatography (45% ether-petrol), a 3:3:1:1 mixture of *Z:Z:E:E* diastereomers of 1-benzyloxy-4-phenyl-3-(4-tolylsulfonyl)-1-buten-4-ol (11j) (0.565 g, 94%) as a pale yellow oil; R_f 0.18 and 0.15, 50% ether-petrol; ν_{max} (film) 3491, 3059, 3028, 2871, 1654, 1595, 1491, 1450, 1399, 1364, 1286, 1217, 1139, 1083, 1056, 1028, 814 and 738 cm⁻¹; δ_H (270 MHz) 7.83-7.66 (8H, m, H-2 and H-6 of Ts, all diast), 7.40-7.00, 6.90-6.83 and 6.78-6.72 (48H, m, H-3 and H-5 of Ts and Ph, all diast), 6.07 (1H, d, J 6.0 Hz, H-4, *Z*-diast), 5.84 (1H, d, J 13.0 Hz, H-4, *E*-diast), 5.77 (1H, d, J 6.0 Hz, H-4, *Z*-diast), 5.78 (1H, s, H-1, *Z*-diast), 5.72 (1H, s, H-1, *E*-diast), 5.07 (1H, d, J 9.0 Hz, H-1, *E*-diast), 5.07 (1H, dd, J 13.0 and 10.5 Hz, H-3, *E*-diast), 4.81 (1H, dd, J 10.5 and 6.0 Hz, H-3, *Z*-diast), 4.64 (1H, dd, J 10.5 and 9.5 Hz, H-2, *Z*-diast), 4.60 (2H, s, CH₂Ph, *E*-diast), 4.43 (1H, m, H-2, *Z*-diast), 4.37-4.26 (6H, m, CH₂Ph, 2 x *Z*- and 1 x *E*-diast), 4.06 (1H, dd, J 10.5 and 6.0 Hz, H-3, *Z*-diast), 3.69-3.62 (2H, m, H-3 and H-2, *E*-diast), 3.44 (1H, dd, J 10.5 and 1.5 Hz, H-2, *E*-diast), 2.45 (3H, s, Me of Ts, E-diast), 2.44 (6H, s, Me of Ts, 2 x Z-diast) and 2.43 (3H, s, Me of Ts, E-diast); m/z (CI) 426 [M+NH₄]⁺, 409 [M+H]⁺, 390 [M-H₂O], 324, 299, 289, 271, 243, 206, 180, 155, 144, 139, 124, 106, 91 [C₇H₇]⁺ (Found: [M+NH₄]⁺, 426.1739. $C_{24}H_{24}O_4S$ requires [M+NH₄]⁺, 426.1739). ## Preparation of 1-benzyloxy-4-(3-methoxyphenyl)-3-(4-tolylsulfonyl)-1-buten-4-ol (11k). This was carried out analogously to the preparation of 1-benzyloxy-3-(4-tolylsulfonyl)-1-pentadecen-4-ol on a 5.93 mmol scale starting from 3-benzyloxy-1-(4-tolylsulfonyl)-2-propene and 3-methoxybenzaldehyde to give, after chromatography (30%→50% ether-petrol), a 3:3:1:1 mixture of Z:Z:E:E diastereomers of 1benzyloxy-4-(3-methoxyphenyl)-3-(4-tolylsulfonyl)-1-buten-4-ol (11k) (2.48 g, 95%) as a colourless, oily solid; R_f 0.21, 0.15 and 0.10, 50% ether–petrol; ν_{max} (film) 3491, 3058, 3029, 2988, 1655, 1597, 1488, 1452, 1433, 1400, 1285, 1184, 1082, 1042, 942, 874, 813 and 735 cm⁻¹; δ_H (500 MHz) 7.82-7.65 (8H, m, H-2 and H-6 of Ts, all diast), 7.49-7.00 and 6.98-6.65 (44H, m, H-3 and H-5 of Ts, Ph and 3-MeOPh all diast), 6.07 (1H, d, J 6.0 Hz, H-4, Z-diast), 5.88 (1H, d, J 12.5 Hz, H-4, E-diast), 5.82 (1H, d, J 12.5 Hz, H-4, E-diast), 5.80 (1H, d, J 6.0 Hz, H-4, Z-diast), 5.72 (1H, s, H-1, Z-diast), 5.59 (1H, d, J 5.0 Hz, H-1, E-diast), 5.50 (1H, s, H-1, E-diast), 5.21 (1H, d, J 9.5 Hz, H-1, Z-diast), 4.80 (1H, dd, J 10.5 and 6.2 Hz, H-3, Z-diast), 4.72 (1H,d, J 11.5 Hz, H-2, E-diast), 4.64 (1H, dd, J 11.0 and 9.5 Hz, H-2, Z-diast, 4.49-4.42 (1H, m, H-2, Z-diast), 4.34 (1H, s, CH₂Ph, Z-diast), 4.33 (1H, s, CH₂Ph, Z-diast), 4.29 (1H, s, CH₂Ph, Ediast), 4.27 (1H, s, CH₂Ph, E-diast), 4.14 (1H, dd, J 11.0 and 7.0 Hz, H-3, E-diast), 4.09 (1H, dd, J 11.0 and 6.0 Hz, H-3, Z-diast), 3.80-3.60 (14H, m, MeO, all diast, H-2 and H-3, E-diast), 2.44 (3H, s, Me of Ts, Z-diast), 2.39 (3H, s, Me of Ts, E-diast), 2.37 (3H, s, Me of Ts, Z-diast) and 2.35 (3H, s, Me of Ts, E-diast); m/z (CI) 456 [M+NH₄]+, 239 [M+H]+, 420 [M-H₂O]+, 340 [M-Bn]+, 330 [M-MeOPh]+, 312 [M-MeOPh-H₂O), 264, 174, 147, 144, 139, 135 [BnOC₂H₄]⁺, 107 [BnO]⁺, 91 [C₇H₇]⁺ (Found: [M+NH₄]⁺, 456.1845. $C_{24}H_{26}O_5S$ requires [M+NH₄]⁺, 456.1844). ### Preparation of 2-hydroxy-4-(4-tolylsulfonyl)-5-undecyltetrahydrofuran (12a). A stirred solution of 1-benzyloxy-3-(4-tolylsulfonyl)-1-pentadecen-4-ol (11a) (0.720 g, 1.48 mmol) in 15% aqueous MeCN (30 ml) containing concentrated H₂SO₄ (2.96 ml) was heated at 65°C for 4 h. The yellow reaction mixture was quenched with solid NaHCO3, then water (20 ml) and the aqueous layer extracted with EtOAc (3 x 40 ml). The combined organic layers were washed with saturated aqueous NaHCO₃ (50 ml), water (50 ml), brine (50 ml), dried (MgSO₄) and concentrated under reduced pressure to give a pale yellow oil. Purification by chromatography (35%→55% ether-petrol), gave a 2:2:1:1 mixture of diastereomers of 2hydroxy-4-(4-tolylsulfonyl)-5-undecyltetrahydrofuran (12a) (0.498 g, 85%) as an oily solid; Rf 0.17 and 0.13, 50% ether-petrol; v_{max} (film) 3389, 3028, 2921, 2851, 1595, 1490, 1462, 1400, 1377, 1352, 1314, 1300, 1181, 1149, 1087, 1042 and 814 cm⁻¹; $\delta_{\rm H}$ (270 MHz) 7.82-7.74 (8H, m, H-2 and H-6 of Ts), 7.43-7.32 (8H, m, H-3 and H-5 of Ts), 5.59-5.55 (1H, m, H-2), 5.51-5.43 (2H, m, H-2), 5.38
(1H, ddd, J 11.0, 6.0 and 1.5 Hz, H-2), 4.69 (1H, d, J 6.0 Hz, OH), 4.61 (1H, d, J 11.0 Hz), 4.53-4.45 (2H, m, H-5), 4.40 (1H, m, H-5), 4.16 (1H, m, H-5), 3.91 (1H, q, J 8.0 Hz, H-4), 3.68-3.58 (2H, m, H-4), 3.38 (1H, m, H-4), 2.47 (3H, s, Me of Ts), 2.46 (3H, s, Me of Ts), 2.45 (3H, s, Me of Ts), 2.44 (3H, s, Me of Ts), 2.14-1.87 (8H, m, H-3), 1.64-1.10 (80H, m, H-6 to H-15) and 0.90-0.84 (12H, m, H-16); m/z (EI) 305 [M-Bn]+, 289 [M-C₇H₇O]+, $275, 251, 235, 223 \text{ [M-C}_{11}\text{H}_{23}\text{-H}_{2}\text{O}]^{+}, 222, 151, 139, 124, 123, 109, 91 [C}_{7}\text{H}_{7}]^{+}, 81 \text{ (Found: [M-C}_{11}\text{H}_{23}\text{-H}$ H_2O]+, 223.0434. $C_{22}H_{36}O_4S$ requires [M- $C_{11}H_{23}$ - H_2O]+, 223.0428). ## Preparation of 2-hydroxy-5-isopropyl-4-(4-tolylsulfonyl)tetrahydrofuran (12b). This was prepared in a similar manner to 2-hydroxy-4-(4-tolylsulfonyl)-5-undecyltetrahydrofuran on a 1.48 mmol scale starting from 6-benzyloxy-2-methyl-4-(4-tolylsulfonyl)-5-hexen-3-ol (11b) to give, after chromatography (30%→70% ether-petrol), a 3:3:1:1 mixture of diastereomers of 2-hydroxy-5-isopropyl-4-(4-tolylsulfonyl)-6-hydroxy-5-isopropyl-4-(4-tolylsulfonyl)-7-hydroxy-5-isopropyl-4-(4-tolylsulfonyl)-6-hydroxy-6-hydr tolylsulfonyl)tetrahydrofuran (12b) (0.507 g, 90%) as an oily solid; R_f 0.36 and 0.24, 70% ether-petrol; v_{max} (film) 3402, 1654, 1595, 1540, 1420, 1325, 1289, 1256, 1142, 1083, 1017, 866, 849, 817 and 713 cm⁻¹; δ_H (270 MHz) 7.84-7.75 (8H, m, H-2 and H-6 of Ts), 7.43-7.33 (8H, m, H-3 and H-5 of Ts), 5.53 (1H, dd, J 5.5 and 3.0 Hz, H-2, major diast), 5.51-5.45 (2H, m, H-2, major and minor diast), 5.38 (1H, dd, J 12.0 and 6.5 Hz, H-2, minor diast), 4.87 (1H, d, J 12.0 Hz, OH, minor diast), 4.74 (1H, d, J 12.0 Hz, OH, minor diast), 4.41 (1H, dd, J 5.0 and 4.0 Hz, H-5, minor diast), 4.22 (1H, t, J 6.0 Hz, H-5, minor diast), 4.06 (1H, dd, J 9.0 and 5.0 Hz, H-5, major diast), 3.81 (1H,ddd, J 8.5, 5.0 and 4.0 Hz, H-4, major diast), 3.69 (1H, m, H-4, minor diast), 3.64 (1H, dd, J 11.0 and 5.0 Hz, H-5, major diast), 3.58 (1H, dd, J 8.0 and 5.0 Hz, H-4, major diast), 3.46 (1H, ddd, J 10.5, 4.0 and 1.5 Hz, H-4, minor diast), 2.88-2.78 (2H, m, OH, major diast), 2.72-2.30 (19H, m, 2 x H-6, major diast, 5 x H-3, 3 x major and 2 x minor diast, Me of Ts, all diast), 2.15 (1H, d, J 15.5 Hz, H-3, minor diast), 2.06 (1H, ddd, J 14.0, 8.5 and 2.0 Hz, H-3, minor diast), 2.00 (1H, ddd, J 14.0, 8.0 and 3.0 Hz, H-3, major diast), 1.82 (1H, octet, J 6.0 Hz, H-6, major diast), 1.57 (1H, m, H-6, minor diast), 1.13 (3H, d, J 6.5 Hz, CHCH₃ major diast), 1.07 (3H, d, J 6.5 Hz, CHCH₃, major diast), 1.06 (3H, d, J 6.5 Hz, CHCH₃, major diast), 1.05 (3H, d, J 6.5 Hz, CHCH₃, major diast), 0.92 (3H, d, J 6.5 Hz, CHCH₃, minor diast), 0.87 (3H, d, J 6.5 Hz, CHCH₃, minor diast), 0.75 (3H, d, J 6.0 Hz, CHCH₃, minor diast), 0.73 (3H, d, J 6.0 Hz, CHCH₃, minor diast); m/z (EI) 241 [M-CHMe₂]⁺, 221, 177, 155 [Ts]⁺, 149, 139, 111, 95, 91 [C₇H₇]⁺ (Found: [M-CHMe₂]⁺, 241.0538. C₁₄H₂₀O₄S requires [M-CHMe₂]⁺, 241.0534). #### Preparation of 5-cyclohexyl-2-hydroxy-4-(4-tolylsulfonyl)tetrahydrofuran (12c). This was prepared in a similar manner to 2-hydroxy-4-(4-tolylsulfonyl)-5-undecyltetrahydrofuran on a 1.75 mmol scale starting from 4-benzyloxy-1-cyclohexyl-2-(4-tolylsulfonyl)-3-buten-1-ol (11c) to give, after chromatography (30-70% ether-petrol), a 3:3:1:1 mixture of diastereomers of 5-cyclohexyl-2-hydroxy-4-(4tolylsulfonyl)tetrahydrofuran (12c) (0.543 g, 95%) as a colourless solid; mp 110°C (dec), Rf 0.28 and 0.22, 70% ether-petrol; v_{max} (CH₂Cl₂) 3454, 2928, 2851, 2365, 2356, 2339, 2331, 1674, 1596, 1539, 1495, 1441, 1289, 1143, 1085, 1032, 890, 815, 714 and 664 cm⁻¹; $\delta_{\rm H}$ (270 MHz) 7.85-7.73 (4H, m, H-2 and H-6 of Ts, all diast), 7.45-7.35 (4H, m, H-3 and H-5 of Ts, all diast), 5.56 (1H, m, H-2, major diast), 5.48 (1H, m, H-2, major diast), 5.43 (1H, d, J 4.5 Hz, H-2, minor diast), 5.08 (1H, d, J 6.5 Hz, H-2, minor diast), 4.87 (1H, d, J 13.5 Hz, OH, major diast), 4.73 (1H, d, J 13.5 Hz, OH, minor diast), 4.43 (1H, dd, J 7.0 and 4.5 Hz, H-5, minor diast), 4.23 (1H, t, J 7.0 Hz, H-5, minor diast), 4.17-4.07 (2H, m, H-5, major diast), 3.82 (1H, q, J 4.0 Hz, H-4, major diast), 3.71 (1H, dd, J 13.5 and 5,5 Hz, H-4, minor diast), 3.55-3.48 (1H, m, H-4, minor diast), 3.07 (1H, q, J 7.0 Hz, H-4, major diast), 2.87-2.71 (2H, m, OH, minor and major diast), 2.58 (1H, dd, J 7.0 and 4.5 Hz, H-3, minor diast), 2.54 (1H, dd, J 7.0 and 4.5 Hz, H-3, major diast), 2.53 (3H, s, Me of Ts, major diast), 2.52 (3H, s, Me of Ts, major diast), 2.51 (3H, s, Me of Ts, minor diast), 2.50 (3H, s, Me of Ts, minor diast), 2.37 (1H, dd, J 7.0 and 4.5 Hz, H-3, minor diast), 2.23 (1H, dd, J 10.0 and 5.5 Hz, H-3, major diast), 2.15-2.02 (2H, m, 2 x H-3, major and minor diast), 2.00 (1H, dd, J 7.0 and 4.0 Hz, H-3, minor diast). 1.93 (1H, dd, J 7.0 and 4.5 Hz, H-3, minor diast), 1.87-1.42 (20H, m, H-6, H-7 and H-11, all diast) and 1.82-1.40 (24H, m, H-8 to H-10, all diast); m/z (EI) 342 [M+NH₄]+, 325 [M+H]+, 246, 241, 183, 168 [M-Ts]⁺, 157, 150, 139, 124, 91 [C₇H₇]⁺, 86, 83 (Found: [M+NH₄]⁺, 342.1740. C₁₇H₂₄O₄S requires $[M+NH_4]^+$, 342.1739). #### Preparation of 5-t-butyl-2-hydroxy-4-(4-tolylsulfonyl)tetrahydrofuran (12d). This was prepared in a similar manner to 2-hydroxy-4-(4-tolylsulfonyl)-5-undecyltetrahydrofuran on a 3.53 mmol scale starting from 6-benzyloxy-2,2-dimethyl-4-(4-tolylsulfonyl)-5-hexen-3-ol (11d) to give, after chromatography (20% \rightarrow 50% ether–petrol), a 6:4:2:1 mixture of diastereomers (A:B:C:D) of 5-t-butyl-2-hydroxy-4-(4-tolylsulfonyl)tetrahydrofuran (12d) (0.620 g, 59%) as a colourless solid; R_f 0.33 and 0.31, 70% ether–petrol;
v_{max} (film) 3455, 2959, 1686, 1597, 1446, 1401, 1366, 1307, 1175, 1142, 1086, 1052, 982, 856, 817, 710 and 671 cm⁻¹; $\delta_{\rm H}$ (270 MHz) 7.80-7.71 (8H, m, H-2 and H-6 of Ts, all diast), 7.40-7.27 (8H, m, H-3 and H-5 of Ts, all diast), 5.49-5.43 (4H, m, H-2, all diast), 5.02 (1H, d, J 12.5 Hz, OH, diast A), 4.91 (1H, d, J 12.5 Hz, OH, diast D), 4.31 (1H, d, J 3.0 Hz, H-2, diast A), 4.16 (1H, d, J 5.0 Hz, H-2, diast C), 4.11 (1H, d, J 3.0 Hz, H-2, diast B), 4.05 (1H, d, J 5.0 Hz, H-2, diast D), 3.78-3.68 (2H, m, H-4, diast C and D), 3.54-3.45 (2H, m, H-4, diast A and B), 2.62 (1H, m, H-3, diast C), 2.56 (1H, m, H-3, diast B), 2.50-2.23 (20H, Me of Ts, all diast and H-3, diast A and D), 1.97-1.82 (2H, m, H-3, diast B and C), 0.94 (9H, s, H-6, diast C), 0.81 (9H, s, H-6, diast B), 0.73 (9H, s, H-6, diast D), 0.69 (9H, s, H-6, diast A); m/z (EI) 241 [M-t-Bu]+, 214, 199, 182, 124, 109, 91 [Ct-Ht-]+, 77 [Ct-6Ht-]+, 57 (Found: [M-t-Bu]+, 241.0534. C15H₂₂O₄S requires [M-t-Bu]+, 241.0535). ### Preparation of (E,E)-2-hydroxy-5-(5,7-nonadienyl)-4-(4-tolylsulfonyl)tetrahydrofuran (12e). This was prepared in a similar manner to 2-hydroxy-4-(4-tolylsulfonyl)-5-undecyltetrahydrofuran on a 4.53 mmol scale starting from (9*E*,11*E*)-1-benzyloxy-3-(4-tolylsulfonyl)-1,9,11-tridecatrien-4-ol (11e) to give, after chromatography (70% ether–petrol), a 2:2:1:1 mixture of diastereomers of (*E*,*E*)-2-hydroxy-5-(5,7-nonadienyl)-4-(4-tolylsulfonyl)tetrahydrofuran (12e) (1.56 g, 89%); as a colourless oil; R_f 0.31 and 0.24, 70% ether–petrol; v_{max} (film) 3015, 2932, 2733, 1690, 1597, 1494, 1449, 1301, 1147, 988, 816, 709 and 667 cm⁻¹; δ_H (270 MHz) 7.80-7.74 (8H, m, H-2 and H-6 of Ts, all diast), 7.41-7.27 (8H, m, H-3 and H-5 of Ts, all diast), 6.02-5.92 (8H, m, H-6' and H-7', all diast), 5.60-5.44 (12H, m, H-2, H-5' and H-8', all diast), 4.61-4.39 (4H, m, H-5, all diast), 3.91 (1H, q, J 7.0 Hz, H-4, major diast), 3.69-3.57 (2H, m, H-4, minor diast), 2.46 (3H, s, Me of Ts, major diast), 2.45 (3H, s, Me of Ts, major diast), 2.42 (3H, s, Me of Ts, minor diast), 2.39 (3H, s, Me of Ts, minor diast), 2.26-1.89 (16H, m, H-3 and H-1', all diast), 1.78-1.14 (36H, m, H-2' to H-4' and H-9', all diast); m/z (C1) 364 [M+NH₄-H₂O]+, 346 [M-H₂O]+, 354, 331, 281, 220, 208 [M-Ts]+, 205, 190 [M-TsH-H₂O]+, 108, 93, 81, 77 [C₇H₇]+, 67 (Found: [M+NH₄-H₂O]+, 364.1946). C₂₀H₂₈O₄S requires [M+NH₄-H₂O]+, 364. 1946). #### Preparation of 5-benzyloxymethyl-2-hydroxy-4-(4-tolylsulfonyl)tetrahydrofuran (12f). This was prepared in a similar manner to 2-hydroxy-4-(4-tolylsulfonyl)-5-undecyltetrahydrofuran on a 1.17 mmol scale starting from 1,5-bis(benzyloxy)-3-(4-tolylsulfonyl)-4-penten-2-ol (11f) to give, after chromatography (20% \$\to\$50% ether-petrol), a 2:2:1:1 mixture of diastereomers of 5-benzyloxymethyl-2hydroxy-4-(4-tolylsulfonyl)tetrahydrofuran (12f) (0.418 g, 97%) as a colourless oil; Rf 0.50 and 0.40, ether; v_{max} (film) 3452, 3084, 3059, 3028, 2922, 2863, 1655, 1595, 1450, 1313, 1287, 1207, 1146, 1086, 1027, 914, 815, 738 and 699 cm⁻¹; $\delta_{\rm H}$ (270 MHz) 7.80-7.70 (8H, m, H-2 and H-6 of Ts, all diast), 7.42-7.20 (28H, m, H-2 and H-6 of Ts, Ph, all diast), 5.64 (1H, d, J 5.0 Hz, H-2, major diast), 5.54 (1H, dd, J 11.5 and 5.0 Hz, H-2, minor diast), 5.44-5.38 (2H, m, H-2, major and minor diast), 4.78-4.44 (14H, m, CH₂Ph, 4 x major and 3 x minor diast, 3 x OH, H-5, all diast), 4.36 (1H, d, J 12.0 Hz, CH₂Ph, minor diast), 4.15 (1H, dd, J 10.5 and 3.0 Hz, H-6, major diast), 4.10 (1H, dd, J 10.5 and 4.5 Hz, H-6, minor diast), 4.06-3.97 (3H, m, H-6, major and minor diast and H-4, major diast), 3.93 (1H, ddd, J 9.5, 8.0 and 6.0 Hz, H-4, major diast), 3.80 (1H, ddd, J 10.5, 4.5 and 2.5 Hz, H-4, minor diast), 3.76 (1H, td, J 8.5 and 7.0 Hz, H-4, minor diast), 3.66 (1H, dd, J 10.0 and 2.5 Hz, H-6, major diast), 3.51 (1H, dd, J 11.0 and 3.5 Hz, H-6, minor diast), 3.37 (1H, dd, J 10.5 and 2.5 Hz, H-6, major diast), 3.22 (1H, dd, J 11.0 and 3.5 Hz, H-6, minor diast), 3.12 (1H, s, OH), 2.52-2.30 (18H, m, Me of Ts, all diast and H-3, 3 x major and 3 x minor diast), 2.08 (1H, m, H-3, major diast) and 1.95 (1H, m, H-3, major diast); m/z (EI) 360, 342 [M-H₂O]⁺, 278, 267, 253 [M-OBn]⁺, 246, 241, 139, 124, 107 [BnO]⁺, 91 [C₇H₇]⁺ (Found: [M-H₂O]⁺, 344.1076. C₁₉H₂₂O₅S requires [M-H₂O]⁺, 344.1082). ### Preparation of 5-[2-benzyloxyethyl]-2-hydroxy-4-(4-tolylsulfonyl)tetrahydrofuran (12g). This was prepared in a similar manner to 2-hydroxy-4-(4-tolylsulfonyl)-5-undecyltetrahydrofuran on a 4.67 mmol scale starting from 1,6-bis(benzyloxy)-4-(4-tolylsulfonyl)-5-hexen-3-ol (11g) to give, after chromatography (20% \rightarrow 50% ether–petrol), a 2:2:1:1 mixture of diastereomers of 5-[2-benzyloxyethyl]-2-hydroxy-4-(4-tolylsulfonyl)tetrahydrofuran (12g) (1.53 g, 87%) as a pale yellow oil; R_f 0.17 and 0.13, 70% ether–petrol; ν_{max} (film) 3457, 3033, 2928, 2866, 1684, 1598, 1487, 1448, 1366, 1302, 1206, 1142, 1087, 814, 743, 701 and 666 cm⁻¹; δ_{H} (270 MHz) 7.78-7.71 (8H, m, H-2 and H-6 of Ts, all diast), 7.41-7.23 (28H, m, H-2 and H-6 of Ts and Ph, all diast), 5.58 (1H, d, J 5.0 Hz, H-2, minor diast), 5.50 (2H, m, H-2, major diast), 5.44 (1H, m, H-2, minor diast), 4.71-4.39 (14H, m, CH₂Ph, H-5, all diast and OH, major and minor diast), 3.92-3.39 (8H, m, H-2' and H-4, all diast), 2.94 (1H, s, OH, major diast), 2.59 (1H, s, OH, minor diast), 2.46 (3H, s, Me of Ts, major diast), 2.45 (3H, s, Me of Ts, minor diast), 2.44 (3H, s, Me of Ts, major diast), 2.43 (3H, s, Me of Ts, minor diast), 2.17-1.62 (8H, m, H-1', all diast); m/z (EI) 278, 230, 220 [M+H-Ts]+, 205, 203, 129, 114, 107 [BnO]+, 91 [C₇H₇]+, 79, 55 (Found: [M+H-Ts]+, 220.1099). C₂₀H₂₄O₅S requires [M+H-Ts]+, 220.1099). ## Preparation of 5-[5-(t-butyldimethylsilyloxy)pentyl]-2-hydroxy-4-(4-tolylsulfonyl)tetra-hydrofuran (12h). This was prepared in a similar manner to 2-hydroxy-4-(4-tolylsulfonyl)-5-undecyltetrahydrofuran on a 1.98 mmol scale starting from 1-acetoxy-9-benzyloxy-7-(4-tolylsulfonyl)-8-nonen-6-ol (11h) to give, after chromatography (100% ether→50% EtOAc-petrol), a 2:2:1:1 mixture of diastereomers of 2-hydroxy-5-(5hydroxypentyl)-4-(4-tolylsulfonyl)tetrahydrofuran (16) (0.491 g, 75%) as an oily solid; Rf 0.10, ether; v_{max} (film) 3409, 2935, 2860, 2358, 1597, 1541, 1458, 1291, 1145, 1083, 816 and 667 cm⁻¹. A portion of this material (0.360 g, 1.10 mmol) in CH₂Cl₂ (1 ml plus 1 ml rinse) was added to a stirred mixture of TBDMSCl (0.165 g, 1.096 mmol), DMAP (6.69 mg, 0.0548 mmol, 0.05 eq) and Et₃N (168 µl, 1.21 mmol, 1.1 eq) via cannula. After 2 h the pale yellow reaction mixture was quenched with saturated aqueous NaHCO₃ (5 ml) and the layers separated. The aqueous layer was extracted with EtOAc (3 x 10 ml), the combined organic layers washed with water (2 x 10 ml), brine (10 ml), dried (Na₂SO₄) and the solvents removed under reduced pressure. Chromatography (80% ether-petrol) gave a 4:4:1:1 mixture of diastereomers of 5-[5-(tbutyldimethylsilyloxy)pentyl]-2-hydroxy-4-(4-tolylsulfonyl)tetrahydrofuran (12h) (0.414 g, 85%) as a colourless oil; Rf 0.50 and 0.40, 90% ether-petrol; v_{max} (film) 3471, 2931, 2857, 1597, 1462, 1389, 1360, 1302, 1256, 1147, 1089, 836, 777, 709 and 667 cm⁻¹; $\delta_{\rm H}$ (270 MHz) 7.78-7.76 (8H, m, H-2 and H-6 of Ts, all diast), 7.38-7.25 (8H, m, H-3 and H-5 of Ts, all diast), 5.53 (1H, d, J 5.0 Hz, H-2, major diast), 5.47-5.38 (2H, m, H-2, major and minor diast), 5.37-5.31 (1H, m, H-2, minor diast), 4.64-4.56 (1H, m, H-5, minor diast), 4.51-4.28 (4H, m, 2 x H-5, major diast and OH, major and minor diast), 4.21-4.09 (1H, m, H-5, minor diast), 3.89 (1H, q, J 8.2 Hz, H-4, major diast), 3.66-3.47 (12H, m, H-5', all diast, 2 x H-4 and 2 x OH, major and minor diast), 3.35 (1H, q, J 6.5 Hz, H-4, minor diast), 2.53-2.28 (12H, m, Me of Ts, all diast), 2.28-2.15 (1H, m, H-3, minor diast), 2.10-1.85 (7H, m, H-3, major and minor diast), 1.62-1.16 (32H, m, H-1' to H-4', all diast), 0.84 (36H, s, t-Bu, all diast) and 0.01 (24H, s, MeSi, all diast); m/z (EI) 385 [M-t-Bu]+, 325, 253, 230, 229, 227, 211, 131, 124, 101, 91 [C₇H₇]⁺, 75 (Found: [M-t-Bu]⁺, 385.1505. C₂₂H₃₈O₅SSi requires [M-t-Bu]+, 385.1505). #### Preparation of (E)-2-hydroxy-5-propenyl-4-(4-tolylsulfonyl)tetrahydrofuran (12i). This was prepared in a similar manner to 2-hydroxy-4-(4-tolylsulfonyl)-5-undecyltetrahydrofuran on a 2.38 mmol scale starting from 1-benzyloxy-3-(4-tolylsulfonyl)-1,5-heptadien-4-ol (11i) to give, after chromatography (30% \rightarrow 70% ether-petrol), a 2:2:1:1 mixture of diastereomers of (*E*)-2-hydroxy-5-propenyl-4-(4-tolylsulfonyl)tetrahydrofuran (12i) (0.631 g, 94%) as a colourless oil; R_f 0.24 and 0.18, 70% ether-petrol; v_{max} (film) 3464, 3028, 2921, 2854, 1684, 1637, 159, 1491, 1445, 1300, 1146, 1085, 1035, 967, 887 and 815 cm⁻¹; δ_H (270 MHz) 7.91-7.70 (8H, m, H-2 and H-6 of Ts, all diast), 7.40-7.27 (8H, m, H-3 and H-5 of Ts, all diast), 5.83 (1H, d, J 6.5 Hz, H-2, minor diast), 5.77 (1H, d, J 6.5 Hz, H-2, major diast), 5.71-5.60 (4H, m, H-2', all diast), 5.66 (1H, d, J 6.5 Hz, H-2, minor diast), 5.62 (1H, d, J 5.0 Hz, H-2, major diast), 5.51 (1H, m, H-5, major diast), 5.48-5.33 (4H, m, H-1', all diast), 5.15 (1H, d, J 7.0 Hz, H-5, minor diast), 5.03 (1H, d, J 7.0 Hz, H-5, minor diast), 4.85-4.78 (4H, m, H-4, H-5, major diast, 2 x OH, major diast), 4.71 (1H, t, J 7.5 Hz, H-4, minor diast), 4.57 (1H, t, J 7.1 Hz, H-4, major diast), 3.83-3.72 (1H, m, H-3, major diast), 3.49-3.43 (1H, m, H-3, major diast), 2.61 (1H, dd, J 9.0 and 5.0 Hz, H-3, minor diast), 2.53 (1H, dd, J 9.0 and 4.5 Hz, H-3, major diast), 2.49-2.43 (16H, m, Me of Ts, all diast, 2 x H-3, minor diast and 2 x OH, minor diast), 2.20 (1H, dd, J 12.5 and 7.5 Hz, H-3 minor diast), 2.11 (1H, dd, J 13.5 and 8.0 Hz, H-3 major diast), 1.72 (3H, dd, J 6.5 and 0.5 Hz, H-3', minor diast), 1.68 (3H, d, J 6.5 Hz, H-3', major diast), 1.63 (3H, d, J 6.0 Hz, H-3', minor diast), 1.51 (3H, d, J 6.0 Hz,
H-3', major diast); m/z (CI) 282 [M+NH₄-H₂O]+, 264 [M-H₂O]+, 256, 183, 139, 124, 97, 91 [C₇H₇]+, 79, 69, 41 (Found: [M+NH₄-H₂O]+, 282.1164). ## Preparation of 2-hydroxy-5-phenyl-4-(4-tolylsulfonyl)tetrahydrofuran (12j). This was prepared in a similar manner to 2-hydroxy-4-(4-tolylsulfonyl)-5-undecyltetrahydrofuran on a 1.35 mmol scale starting from 1-benzyloxy-4-phenyl-3-(4-tolylsulfonyl)-1-buten-4-ol (11j) to give, after chromatography (30%→70% ether-petrol), a 5:5:1:1 mixture of diastereomers of 2-hydroxy-5-phenyl-4-(4tolylsulfonyl)tetrahydrofuran (12j) (0.396 g, 92%) as an oily solid; Rf 0.26 and 0.11, 70% ether-petrol; v_{max} (film) 3460, 3060, 2923, 1595, 1491, 1448, 1400, 1378, 1301, 1289, 1182, 1145, 1085, 1041, 845, 814, 740 and 701 cm⁻¹; $\delta_{\rm H}$ (270 MHz) 7.83-7.66 (8H, m, H-2 and H-6 of Ts, all diast), 7.843-7.00 (28H, m, H-3 and H-5 of Ts and Ph, all diast), 5.90 (1H, d, J 5.0 Hz, H-2, minor diast), 5.76 (1H, dd, J 12.0 and 5.0 Hz, H-2, major diast), 5.68 (1H, t, J 4.0 Hz, H-2, minor diast), 5.63 (1H, dd, J 12.0 and 5.0 Hz, H-2, major diast), 5.60 (1H, d, J 4.0 Hz, H-5, major diast), 5.52 (1H, d, J 7.5 Hz, H-5, minor diast), 5.39 (1H, d, J 7.0 Hz, H-5, major diast), 5.25 (1H, d, J 6.0 Hz, H-5, minor diast), 5.01 (1H, d, J 12.5 Hz, OH, major diast), 4.91 (1H, d, J 12.0 Hz, OH, major diast), 4.28 (1H, q, J 7.5 Hz, H-4, minor diast), 4.03 (2H, m, H-4 and OH, minor diast), 3.66 (1H, ddd, J 10.0, 4.0 and 2.5 Hz, H-4, major diast), 3.39 (1H, t, J 7.0 Hz, H-4, major diast), 3.15 (1H, s, OH, minor diast), 2.97-2.87 (3H, m H-3, 2 x major and 1 x minor diast), 2.77 (1H, ddd, J 15.0, 8.5 and 6.0 Hz, H-3, minor diast), 2.67 (1H, ddd, J14.0, 9.5 and 5.0 Hz, H-3, minor diast), 2.54-2.35 (13H, m, Me of Ts, all diast, H-3, major diast), 2.32 (1H, ddd, J 14.0, 8.5 and 1.5 Hz, H-3, major diast) and 2.26 (1H, ddd, J 13.0, 7.5 and 1.5 Hz, H-3, major diast); m/z (EI) 318 [M]⁺, 289 [M-CHO]⁺, 274 [M-CO₂]⁺, 212 [M-PhCHO]+, 162 [M-Ts]+, 133, 105 [PhCO]+, 91 [C₇H₇]+, 84, 77 [C₆H₅]+ (Found: [M]+, 318.0917. C₁₇H₁₈O₄S requires [M]⁺, 318.0925). #### Preparation of 2-hydroxy-5-(3-methoxyphenyl)-4-(4-tolylsulfonyl)tetrahydrofuran (12k). This was prepared in a similar manner to 2-hydroxy-4-(4-tolylsulfonyl)-5-undecyltetrahydrofuran on a 2.37 mmol scale starting from 1-benzyloxy-4-(3-methoxyphenyl)-3-(4-tolylsulfonyl)-1-buten-4-ol (11k) to give, after chromatography ($10\% \rightarrow 70\%$ ether–petrol), a 3:3:1:1 mixture of diastereomers of 2-hydroxy-5-(3-methoxyphenyl)-4-(4-tolylsulfonyl)tetrahydrofuran (12k) (0.746 g, 90%) as an oily solid; R_f 0.24 and 0.18, 70% ether–petrol; v_{max} (film) 3465, 3057, 2927, 2835, 1597, 1489, 145, 1287, 1146, 1084, 1040, 874, 814, 786 and 700 cm⁻¹; δ_H (500 MHz) 7.83-7.67 (8H, m, H-2 and H-6 of Ts, all diast), 7.42-6.50 (24H, m, H-3 and H-5 of Ts and MeOPh, all diast), 5.73 (1H, d, J 4.0 Hz, H-2, major diast), 5.63 (1H, d, J 4.5 Hz, H-2, minor diast), 5.55 (1H, d, J 4.0 Hz, H-2, major diast), 5.32 (1H, d, J 6.5 Hz, H-2, minor diast), 4.95 (1H, s, OH, minor diast), 4.82 (1H, s, OH, minor diast), 4.66 (1H, dd, J 11.5 and 4.5 Hz, H-4, minor diast), 4.48 (1H, dd, J 11.5 and 4.5 Hz, H-4, major diast), 3.82-3.62 (14H, m, OMe, all diast and OH, major diast), 3.29-3.25 (2H, m, H-4, major diast), 3.82-3.62 (14H, m, OMe, all diast and OH, major diast), 3.29-3.25 (2H, m, H-4, major diast), 3.82-3.62 (14H, m, OMe, all diast and OH, major diast), 3.29-3.25 (2H, m, H-4, major diast), 3.29-3.25 (2H, m, H-4, major diast), 3.82-3.62 (14H, m, OMe, all diast and OH, major diast), 3.29-3.25 (2H, m, H-4, 3, major diast), 3.18 (1H, dd, J 15.0 and 1.5 Hz, H-3, minor diast), 2.94 (1H, dd, J 14.0 and 8.0 Hz, H-3, minor diast) and 2.65-2.19 (16H, m, Me of Ts, all diast, H-3, 2 x major, 2 x minor diast); m/z (CI) 366 [M+NH₄]+, 349 [M+H]+, 348 [M+NH₄-H₂O]+, 312, 274, 246, 210, 195, 174, 145, 124, 91 [C₇H₇]+, 77 [C₆H₅]+ (Found: [M+NH₄]+, 366.1380. C₁₈H₂₀O₅S requires [M+NH₄]+, 366.1375). #### Preparation of 4-(4-tolylsulfonyl)-2-oxo-5-undecyltetrahydrofuran (13a). A solution of 2-hydroxy-4-(4-tolylsulfonyl)-5-undecyltetrahydrofuran (12a) (0.481 g, 1.21 mmol) in CH₂Cl₂ (19.2 ml plus 5 ml rinse) was added via cannula to a stirred mixture of PDC (0.684 g, 1.82 mmol, 1.5 eq) and 4Å molecular sieves (1.13 g) under a nitrogen atmosphere. The initially orange suspension rapidly became dark brown-black in colour. After 4 h the reaction mixture was diluted with ether (30 ml) and the mixture filtered through a plug of silica gel, which was thoroughly washed with EtOAc (300 ml). Removal of the solvents followed by chromatography (50% ether-petrol), gave a 1:1 mixture of diastereomers of 2-oxo-4-(4-tolylsulfonyl)-5-undecyltetrahydrofuran (13a) (0.399 g, 83%) as a colourless, oily solid; R_f 0.40 and 0.27, 80% ether-petrol; v_{max} (film) 2929, 2855, 1784, 1651, 1597, 1467, 1324, 1304, 1147, 1087, 1017, 816, 715 and 676 cm⁻¹; $\delta_{\rm H}$ (270 MHz) 7.81-7.76 (4H, m, H-2 and H-6 of Ts, both diast), 7.44-7.38 (4H, m, H-3 and H-5 of Ts, both diast), 4.85 (1H, dt, J 7.0 and 5.5 Hz, H-5), 4.79 (1H, ddd, J 10.5, 7.0 and 3.0 Hz, H-5), 3.98 (1H, td, J 8.5 and 7.0 Hz, H-4), 3.61 (1H, ddd, J 10.0, 6.5 and 5.5 Hz, H-4), 2.99 (1H, dd, J 18.5 and 6.5 Hz, H-3), 2.97 (1H, dd, J 17.5 and 8.5 Hz, H-3), 2.78 (1H, dd, J 18.5 and 10.0 Hz, H-3), 2.58 (1H, dd, J 17.5 and 8.5 Hz, H-3), 2.50-2.42 (7H, m, Me on Ts, both diast and H-6), 2.24-2.01 (3H, m, H-6), 1.68-1.60 (4H, m, H-7, both diast), 1.46-1.20 (32H, m, H-8 to H-15, both diast) and 0.91-0.85 (6H, m, H-16); m/z (EI) 395 [M+H]+, 377, 239 [M-Ts]+, 221, 203, 179, 157, 139, 109, 97, 91 [C₇H₇]+, 81, 69, 55, 43 (Found: [M-Ts]+, 239.0378. C₂₂H₃₄O₄S requires [M-Ts]+, 239.0378). #### Preparation of 5-isopropyl-2-oxo-4-(4-tolylsulfonyl)tetrahydrofuran (13b). This was prepared analogously to 2-oxo-4-(4-tolylsulfonyl)-5-undecyltetrahydrofuran on a 0.758 mmol scale starting from 2-hydroxy-5-isopropyl-4-(4-tolylsulfonyl)tetrahydrofuran (12b) to give, after chromatography (80% ether–petrol), a 4:1 mixture of diastereomers of 5-isopropyl-2-oxo-4-(4-tolylsulfonyl)tetrahydrofuran (13b) (0.186 g, 87%) as an oily solid; R_f 0.32 and 0.22, 80% ether–petrol; v_{max} (film) 1794, 1503, 1315, 1300, 1256, 1203, 1185, 1159, 1139, 1085, 1036, 1017, 987, 950, 820, 728, 710, 683 and 657 cm⁻¹; δ_H (270 MHz) 7.80-7.75 (4H, m, H-2 and H-6 of Ts, both diast), 7.44-7.37 (4H, m, H-3 and H-5 of Ts, both diast), 4.71 (1H, dd, J 5.5 and 3.5 Hz, H-5, minor diast), 4.37 (1H, dd, J 8.0 and 6.0 Hz, H-5, major diast), 3.97 (1H, ddd, J 8.5, 6.0 and 4.5 Hz, H-4, major diast), 3.66 (1H, d, J 10.0 and 3.5 Hz, H-4, minor diast), 2.96 (1H, dd, J 19.0 and 4.5 Hz, H-3, minor diast), 2.85-2.74 (3H, m, H-3, major and minor diast and CHCH₃, major diast), 2.68 (1H, dd, J 18.0 and 8.5 Hz, H-3, major diast), 2.44 (3H, s, Me of Ts, minor diast), 2.43 (3H, s, Me of Ts, major diast), 1.86 (1H, m, CHCH₃, minor diast), 1.15 (6H, d, J 6.5 Hz, CHCH₃, major diast), 0.92 (3H, s, CHCH₃, minor diast) and 0.89 (3H, s, CHCH₃, minor diast); m/z (EI) 246, 239 [M-CHMe₂]+, 219, 183, 155, 139, 124, 91 [C₇H₇]+, 84, 77 [C₆H₅]+, 55, 43 (Found: [M-CHMe₂]+, 239.0378. C₁₄H₁₈O₄S requires [M-CHMe₂]+, 239.0378). #### Preparation of 5-cyclohexyl-2-oxo-4-(4-tolylsulfonyl)tetrahydrofuran (13c). This was prepared analogously to 2-oxo-4-(4-tolylsulfonyl)-5-undecyltetrahydrofuran on a 0.660 mmol scale starting from 5-cyclohexyl-2-hydroxy-4-(4-tolylsulfonyl)tetrahydrofuran (12c) to give, after chromatography (50% ether-petrol), a 6:1 mixture of diastereomers of 5-cyclohexyl-2-oxo-4-(4-tolylsulfonyl)tetrahydrofuran (13c) (0.184 g, 86%) as an oily solid; R_f 0.46 and 0.33, 80% ether-petrol; v_{max} (film) 2929, 2856, 1784, 1596, 1451, 1313, 1147, 1085, 1011, 814, 726 and 662 cm⁻¹; δ_H (270 MHz) 7.93 (2H, d, J 8.0 Hz, H-2 and H-6 of Ts, minor diast), 7.78 (2H, d, J 8.0 Hz, H-2 and H-6 of Ts, major diast), 7.50-7.33 (4H, m, H-3 and H-5 of Ts, both diast), 4.77-4.66 (1H, m, H-5, major diast), 4.49-4.38 (1H, m, H-5, minor diast), 4.00-3.93 (1H, m, H-4, minor diast), 3.78-3.67 (1H, m, H-4, major diast), 3.00-2.85 (2H, m, H-3, major and minor diast), 2.81-2.57 (2H, m, H-3, major and minor diast), 2.51 (3H, s, Me of Ts, minor diast), 2.55 (3H, s, Me of Ts, major diast) and 1.81-0.81 (22H, m, C_6H_{11} , both diast); m/z (EI) 322 [M]+, 277, 258, 239 [M-c- C_6H_{11}]+, 183, 167 [M-Ts]+, 155, 91, 84, 55 (Found: [M-c- C_6H_{11}]+, 239.0378. $C_{17}H_{22}O_4S$ requires [M-c- C_6H_{11}]+, 239.0378). ### Preparation of 5-t-butyl-2-oxo-4-(4-tolylsulfonyl)tetrahydrofuran (13d). This was prepared analogously to 2-oxo-4-(4-tolylsulfonyl)-5-undecyltetrahydrofuran on a 1.62 mmol scale starting from 5-*t*-butyl-2-hydroxy-4-(4-tolylsulfonyl)tetrahydrofuran (**12d**) to give, after chromatography (40% \rightarrow 70% ether–petrol), 5-*t*-butyl-2-oxo-4-(4-tolylsulfonyl)tetrahydrofuran (**13d**) (0.412 g, 85%) as a colourless solid; mp 118-119°C, R_f 0.31 and 0.26, 80% ether–petrol; v_{max} (CH₂Cl₂) 2953, 1781, 1603, 1579, 1310, 1164, 1027, 994 and 812 cm⁻¹; $\delta_{\rm H}$ (270 MHz) 7.70-7.26 (4H, m, H-2 and H-6 of Ts, both diast), 7.38-7.31 (4H, m, H-3 and H-5 of Ts, both diast), 4.52 (1H, d, J 1.0 Hz, H-5, major diast), 4.41 (1H, d, J 5.5 Hz, H-5, minor diast), 3.94 (1H, dt, J 11.5 and 4.5 Hz, H-4, minor diast), 3.69 (1H, dt, J 10.0 and 2.5 Hz, H-4, major diast), 2.89 (1H, dd, J 19.5 and 2.2 Hz, H-3, major diast), 2.75 (1H, dd, J 19.5 and 10.0 Hz, H-3, major diast), 2.60 (2H, d, J 6.0 Hz, H-3, minor diast), 2.42 (6H, s, Me of Ts, both diast) and 0.80 (18H, s, H-6, both diast); m/z (EI) 296 [M]+, 281 [M-Me]+, 239 [M-*t*-Bu]+, 214, 155, 139 [M-Ts]+, 91 [C₇H₇]+, 77 [C₆H₅]+, 57, 44 (Found: C, 60.76; H, 6.74. C₁₅H₂₀O₄S requires C, 60.79; H, 6.80%). #### Preparation of (E,E)-5-(5,7-nonadienyl)-2-oxo-4-(4-tolylsulfonyl)tetrahydrofuran (13e). This was prepared analogously to 2-oxo-4-(4-tolylsulfonyl)-5-undecyltetrahydrofuran on a 2.52 mmol scale starting from
(E,E)-2-hydroxy-5-(5,7-nonadienyl)-4-(4-tolylsulfonyl)tetrahydrofuran (12e) to give, after chromatography (60%→80% ether–petrol), a 1:1 mixture of diastereomers (A:B) of (E,E)-5-(5,7-nonadienyl)-2-oxo-4-(4-tolylsulfonyl)tetrahydrofuran (13e) (0.753 g, 82%) as a colourless oil. Small amounts of each isomer were separated; diastereomer A, Rf 0.29, 80% ether-petrol; v_{max} (film) 2929, 1788, 1597, 1493, 1446, 1322, 1146, 1086, 990, 817, 714 and 664 cm⁻¹; δ_H (270 MHz) 7.76 (2H, d, J 8.0 Hz, H-2 and H-6 of Ts), 7.38 (2H, d, J 8.0 Hz, H-3 and H-5 of Ts), 5.83-5.26 (2H, m, H-6' and H-7'), 5.63-5.37 (2H, m, H-5' and H-8'), 4.78-4.82 (1H, m, H-5), 3.62 (1H, td, J 10.0 and 6.0 Hz, H-4), 2.96 (1H, dd, J 19.0 and 10.0 Hz, H-3), 2.75 (1H, dd, J 19.0 and 10.0 Hz, H-3), 2.43 (3H, s, Me of Ts), 2.31-1.90 (2H, m, H-1'), 1.70 (3H, d, J 7.0 Hz, H-9'), 1.64-1.52 (2H, m, H-2') and 1.43-1.22 (4H, m, H-3' and H-4'); m/z (EI) 206 [M-Ts]+, 177, 151, 137, 124, 91 [C₇H₇]⁺, 81, 41, 28 (Found: C, 66.61; H, 7.22. C₂₀H₂₆O₄S requires C, 66.27; H, 7.23%). Diastereomer B, R_f 0.20, 80% ether-petrol; v_{max} (film) 2929, 1788, 1597, 1493, 1446, 1322, 1146, 1086, 990, 817, 714 and 664 cm⁻¹; $\delta_{\rm H}$ (270 MHz) 7.75 (2H, d, J 8.0 Hz, H-2 and H-6 of Ts), 7.37 (2H, d, J 8.0 Hz, H-3 and H-5 of Ts), 6.03-5.93 (2H, m, H-6' and H-7'), 5.65-5.41 (2H, m, H-5' and H-8'), 4.82-4.71 (1H, m, H-5), 4.04-3.89 (1H, m, H-4), 2.95 (1H, dd, J 17.0 and 7.5 Hz, H-3), 2.57 (1H, dd, J 17.0 and 10.0 Hz, H-3), 2.44 (3H, s, Me of Ts), 2.30-1.93 (2H, m, H-1'), 1.79-1.55 (5H, m, H-2' and H-9') and 1.55-1.41 (4H, m, H-3' and H-4'); m/z (EI) 206 [M-Ts]+, 177, 151, 137, 124, 91 [C₇H₇]+, 81, 41, 28 (Found: C, 66.53; H, 7.34. C₂₀H₂₆O₄S requires C, 66.27; H, 7.23%). ## Preparation of 5-benzyloxymethyl-2-oxo-4-(4-tolylsulfonyl)tetrahydrofuran (13f). This was prepared analogously to 2-oxo-4-(4-tolylsulfonyl)-5-undecyltetrahydrofuran on a 0.671 mmol scale starting from 5-benzyloxymethyl-2-hydroxy-4-(4-tolylsulfonyl)tetrahydrofuran (12f) to give, after chromatography (60% ether-petrol), a 1:1 mixture of diastereomers of 5-benzyloxymethyl-2-oxo-4-(4-tolylsulfonyl)tetrahydrofuran (13f) (0.195 g, 81%) as a colourless oil; R_f 0.26 and 0.13, 80% ether-petrol; v_{max} (film) 3033, 2928, 2859, 1790, 1598, 1494, 1456, 1365, 1313, 1285, 1143, 1118, 1030, 813, 743, 703 and 662 cm-¹; δ_{H} (270 MHz) 7.75 (2H, d, J 8.5 Hz, H-2 and H-6 of Ts), 7.74 (2H, d, J 8.5 Hz, H-2 and H-6 of Ts), 7.52-7.21 (14H, m, H-3' and H-6' of Ts and Ph, both diast), 5.02 (1H, m, H-5), 4.93 (1H, m, H-5), 4.66 (1H, d, J 12.0 Hz, CH₂Ph), 4.53 (1H, d, J 12.0 Hz, CH₂Ph), 4.52 (1H, d, J 12.0 Hz, CH₂Ph), 4.43 (1H, d, J 12.0 Hz, CH₂Ph), 4.20-3.94 (4H, m, H-4 and H-1', both diast), 3.76 (1H, dd, J 11.5 and 3.0 Hz, H-1'), 3.49 (1H, dd, J 11.5 and 3.0 Hz, H-1'), 3.07 (1H, dd, J 18.0 and 9.0 Hz, H-3), 2.90 (1H, d, J 2.0 Hz, H-3), 2.87 (1H, s, H-3), 1.45 (3H, s, Me of Ts) and 1.43 (3H, s, Me of Ts); m/z (EI) 360 [M]+, 278, 253 [M-BnO]+, 246, 237, 214, 205 [M-Ts]+, 139, 124, 107 [BnO]+, 99 [M+H-Ts-BnO]+, 91 [C₇H₇]+, 88 (Found: [M-BnO]+, 253.0531. C₁₉H₂₀O₅S requires [M-BnO]+, 253.0535). ## Preparation of 5-[2-benzyloxyethyl]-2-oxo-4-(4-tolylsulfonyl)tetrahydrofuran (13g) and 5-[2-benzyloxyethyl]-2(5H)-furanone (14g). This was prepared analogously to 2-oxo-4-(4-tolylsulfonyl)-5-undecyltetrahydrofuran on a 3.23 mmol scale starting from 5-[2-benzyloxyethyl]-2-hydroxy-4-(4-tolylsulfonyl)tetrahydrofuran (12g) to give, after chromatography (30%→60% ether-petrol), a combination of a 2:1 mixture of diastereomers of 5-[2benzyloxyethyl]-2-oxo-4-(4-tolylsulfonyl)tetrahydrofuran (13g) (0.569 g, 47%) and 5-[2-benzyloxyethyl]-2(5H)-furanone¹⁴ (14g) (0.245 g, 35%), both as colourless oils; 13g; R_f 0.35 and 0.24, 80% ether-petrol; v_{max} (film) 2867, 2291, 1788, 1595, 1450, 1362, 1320, 1146, 1087, 816 and 741 cm⁻¹; δ_{H} (270 MHz) 7.78-7.70 (4H, m, H-2 and H-6 of Ts, both diast), (14H, m, H-3 and H-5 of Ts and Ph, both diast), 5.29-5.03 (2H, m, H-5, both diastereomers), 4.48 (2H, d, J 12.0 Hz, CH₂Ph, minor diast), 4.47 (2H, d, J 12.0 Hz, CH₂Ph, major diast), 4.06-3.92 (4H, m, H-2', both diast), 3.97-3.65 (1H, m, H-4, minor diast), 3.62-3.47 diast 4, major diast), 2.97 (1H, dd, J 18.5 and 6.3 Hz, H-3, major diast), 2.83 (1H, dd, J 18.5 and 10.0 Hz, H-3, major diast), 2.73-2.61 (2H, m, H-3, minor diast), 2.46 (3H, s, Me of Ts, minor diast), 2.45 (3H, s, Me of Ts, major diast) and 2.00-1.91 (4H, m, H-1', both diast); m/z (EI) 374 [M]+, 286, 267 [M-OBn]+, 246, 219 [M-Ts]+, 214, 182, 146, 124, 112 [M-Ts-OBn]+, 107 (OBn]+, 91 [C₇H₇]+, 84 (Found: C, 64.32; H, 6.21. $C_{20}H_{22}O_5S$ requires C, 64.15; H, 5.92%); **14g**: R_f 0.38, 80% ether–petrol; v_{max} (film) 2866, 1755, 1601, 1451, 1362, 1164, 1101, 1017, 904, 817, 744 and 701 cm⁻¹; $\delta_{\rm H}$ (270 MHz) 7.51 (1H, dd, J 5.5 and 1.5 Hz, H-4), 7.48-7.27 (5H, m, Ph), 6.07 (1H, dd, J 5.5 and 2.0 Hz, H-3), 5.26-5.20 (1H, m, H-5), 4.53 (1H, d, J 12.0 Hz, CH₂Ph), 4.48 (1H, d, J 12.0 Hz, CH₂Ph), 3.73-3.56 (2H, m, H-2'), 2.35-2.01 (1H, m, H-1') and 1.99-1.87 (1H, m, H-1'); m/z (EI) 218 [M]+, 188, 159, 146, 140, 133, 127 [M-Bn]+, 112 [M+H-OBn]+, 91 [C₇H₇]⁺, 84 (Found: C, 71.84; H, 6.41. C₁₃H₁₄O₃ requires C, 71.54; H, 6.47%). ## Preparation of 5-(5-t-butyldimethylsilyloxypentyl)-2-oxo-4-(4-tolylsulfonyl)tetrahydrofuran (13h). This was prepared analogously to 2-oxo-4-(4-tolylsulfonyl)-5-undecyltetrahydrofuran on a 0.511 mmol scale starting from 5-[5-(t-butyldimethylsilyloxy)pentyl]-2-hydroxy-4-(4-tolylsulfonyl)tetrahydrofuran (**12h**) to give, after chromatography (30% \rightarrow 70% ether-petrol), a 1:1 mixture of diastereomers of 5-(5-t-butyldimethylsilyloxypentyl)-4-(4-tolylsulfonyl)-2-oxotetrahydrofuran (**13h**) (0.194 g, 86%) as a colourless oil; R_f 0.68 and 0.55, ether; v_{max} (film) 2937, 2860, 1787, 1598, 1462, 1318, 1254, 1151, 1096, 837, 776 and 666 cm⁻¹; δ _H (270 MHz) 7.79-7.76 (4H, m, H-2 and H-6 of Ts, both diast), (4H, m, H-3 and H-5 of Ts, both diast), 4.86-4.78 (2H, m, H-5, both diast), 3.98 (1H, q, J 8.0 Hz, H-4), 3.63-3.55 (5H, m, H-5', both diast and H-4), 3.02-2.91 (2H, m, H-3), 2.76 (1H, dd, J 18.5 and 11.0 Hz, H-3), 2.59 (1H, dd, J 18.5 and 8.5 Hz, H-3), 2.47 (3H, s, Me of Ts), 2.46 (3H, s, Me of Ts), 1.67-1.21 (16H, m, H-1' to H-4', both diast), 0.88 (18H, s, t-Bu, both diast) and 0.04 (12H, s, SiMe, both diast); m/z (EI) 383 [M-t-Bu]+, 269, 246, 241 [M-TsH-Me]+, 227 [M-TsH-t-Bu]+, 124, 107, 91 [C₇H₇]+, 75 (Found: [M-t-Bu]+, 383.1348. C₂₂H₃₆O₅SSi requires [M-t-Bu]+, 383.1348). ### Preparation of (E)-2-oxo-5-propenyl-4-(4-tolylsulfonyl)tetrahydrofuran (13i). This was prepared analogously to 2-oxo-4-(4-tolylsulfonyl)-5-undecyltetrahydrofuran on a 1.50 mmol scale starting from (E)-2-hydroxy-5-propenyl-4-(4-tolylsulfonyl)tetrahydrofuran (12i) to give, after chromatography (70% ether–petrol), a 7:1 mixture of diastereomers of (E)-2-oxo-5-propenyl-4-(4-tolylsulfonyl)tetrahydrofuran (13i) (0.345 g, 83%) as a colourless, oily solid; R_f 0.33 and 0.19, 80% ether–petrol; v_{max} (film) 2926, 1786, 1597, 1448, 1318, 1150, 1087, 970, 812, 718 and 662 cm⁻¹; δ_H (270 MHz) 7.79-7.72 (4H, m, H-2 and H-6 of Ts, both diast), 7.42-7.23 (4H, m, H-3 and H-5 of Ts, both diast), 5.88-5.82 (1H, octet, J 4.0 Hz, H-7, minor diast), 5.82-5.72 (1H, octet, J 4.0 Hz, H-7, major diast), 5.34-5.25 (2H, m, H-6, both diast), 5.23-5.11 (2H, m, H-5, both diast), 3.72-3.68 (2H, m, H-5, both diast), 3.10 (1H, dd, J 18.0 and 9.0 Hz, H-3, minor diast), 3.03 (1H, dd, J 18.0 and 7.0 Hz, H-3, major diast), 2.81 (1H, dd, J 18.0 and 9.0 Hz, H-3, minor diast), 2.68 (1H, dd, J 18.0 and 7.0 Hz, H-3, major diast), 2.48 (6H, s, Me of Ts, both diast) and 1.68-1.50 (6H, d, J 7.0 Hz, H-8, both diast); m/z (EI) 281 [M+H]+, 267 [M-Me]+, 239 [M-C₃H₅]+, 214, 193, 139, 124 [M-TsH]+, 91 [C₇H₇]+, 69, 41 (Found: [M+H]+, 281.0848). #### Preparation of 2-oxo-5-phenyl-4-(4-tolylsulfonyl)tetrahydrofuran (13j). This was prepared analogously to 2-oxo-4-(4-tolylsulfonyl)-5-undecyltetrahydrofuran on a 0.873 mmol scale starting from 2-hydroxy-5-phenyl-4-(4-tolylsulfonyl)tetrahydrofuran (**12j**) to give, after chromatography (50% ether–petrol), a 1:1 mixture of diastereomers of 2-oxo-5-phenyl-4-(4-tolylsulfonyl)tetrahydrofuran (**13j**) (0.247 g, 89%) as an oily pale yellow solid; R_f 0.59 and 0.24, 80% ether–petrol; v_{max} (film) 3047, 2925, 2859, 1789, 1730, 1678, 1598, 1501, 1452, 1410, 1317, 1226, 1153, 1087, 1024, 816, 750, 740 and 666 cm⁻¹; δ_H (270 MHz) 7.78 (2H, d, J 8.5 Hz, H-2 and H-6 of Ts), 7.40-7.14 (16H, m, H-2', H-3', H-5' and H-6' of Ts and Ph, both diast), 5.92 (1H, d, J 4.0 Hz, H-5), 5.81 (1H, d, J 4.0 Hz, H-5), 4.36 (1H, ddd, J 13.5, 7.0 and 6.0 Hz, H-4), 3.90 (1H, ddd, J 10.0, 5.0 and 4.0 Hz, H-4), 3.33 (1H, dd, J 18.0 and 6.0 Hz, H-3), 3.04 (1H, dd, J 18.5 and 5.0 Hz, H-3), 2.93 (1H, dd, J 18.0 and 13.5 Hz, H-3), 2.89 (1H, dd, J 18.5 and 10.0 Hz, H-3), 2.46 (3H, s, Me of Ts) and 2.39 (3H, s, Me of Ts); m/z (El) 316 [M]+, 314, 246, 210, 196, 193, 180, 165, 160 [M-TsH), 105, 91 C_7H_7]+, 77 [C_6H_5]+, 65 (Found: [M]+, 316.0770. $C_{17}H_{16}O_4S$ requires [M]+, 316.0769). #### Preparation of 5-(3-methoxyphenyl)-2-oxo-4-(4-tolylsulfonyl)tetrahydrofuran (13k). This was prepared analogously to 2-oxo-4-(4-tolylsulfonyl)-5-undecyltetrahydrofuran on a 0.980 mmol scale starting from 2-hydroxy-5-(3-methoxyphenyl)-4-(4-tolylsulfonyl)tetrahydrofuran (12k) to give, after chromatography (50% ether-petrol), a 1:1 mixture of diastereomers of 5-(3-methoxyphenyl)-2-oxo-4-(4-tolylsulfonyl)tetrahydrofuran (13k) (0.297 g, 87%) as a pale yellow, oily solid; R_f 0.38 and 0.21, 80% etherpetrol; v_{max} (film) 3096, 3068, 2964, 2929, 1790, 1602, 1497, 1466, 1324, 1291, 1268, 1148, 1086, 963, 778, 726, 704 and 663 cm⁻¹; δ_H (270 MHz) 7.78 (2H, d, J 8.5 Hz, H-2 and H-6 of Ts), 7.76 (2H, d, J 8.5 Hz, H-2 and H-6 of Ts), 7.38 (2H, d, J 8.5 Hz, H-3 and H-5 of Ts), 7.34 (2H, d, J
8.5 Hz, H-3 and H-5 of Ts), 7.21 (2H, d, J 9.0 Hz, H-4 of MeOPh, both diast), 6.83 (2H, dd, J 9.0 and 2.5 Hz, H-5 of MeOPh, both diast), 6.72 (2H, d, J 9.0 Hz, H-6 of MeOPh, both diast), 6.63 (2H, s, H-2 of MeOPh, both diast), 5.95 (1H, d, J 4.5 Hz, H-5), 5.83 (1H, d, J 4.5 Hz, H-5), 4.29 (1H, ddd, J 13.0, 5.5 and 4.5 Hz, H-4), 3.90 (1H, ddd, J 9.0, 4.5 and 4.5 Hz, H-4), 3.30 (1H, dd, J 18.0 and 5.5 Hz, H-3), 3.03 (1H, dd, J 18.0 and 4.5 Hz, H-3), 2.91 (1H, dd, J 18.0 and 13.0 Hz, H-3), 2.89 (1H, dd, J 18.0 and 9.0 Hz, H-3), 2.44 (3H, s, Me of Ts) and 2.35 (3H, s, Me of Ts); m/z (EI) 346 [M]+, 307, 293, 279, 190 [M-TsH]+, 167, 149 [M+H-MeOPh-Bn]+, 135, 107 (MeOPh]+, 91 [C₇H₇]+, 71, 57 (Found: [M]+, 346.0875. C₁₈H₁₈O₅S requires [M]+, 346.0875). #### Preparation of 5-undecyl-2(5H)-furanone (14a). To a solution of 2-oxo-4-(4-tolylsulfonyl)-5-undecyltetrahydrofuran (13a) (0.131 g, 0.794 mmol) in CH₂Cl₂ (7.9 ml) at -78°C under a nitrogen atmosphere was added DBU (71.2 μ l, 0.476 mmol, 0.6 eq) causing the reaction to become golden-yellow in colour. After 3 h the solution was quenched with AcOH (0.48 ml of a 1M solution in THF, 0.476 mmol, 0.6 eq) and allowed to warm to rt. After the addition of water (5 ml), the organic layer was separated and the aqueous layer extracted with CH₂Cl₂ (3 x 10 ml). The combined organic layers were washed with water (2 x 10 ml), dried (MgSO₄), concentrated under reduced pressure and purified by chromatography (50% ether-petrol), to give 5-undecyl-2(5H)-furanone¹⁵ (14a) (65 mg, 93%) as a colourless solid; mp 36°C, R_f 0.45, 70% ether-petrol; v_{max} (CH₂Cl₂) 2922, 2855, 1743, 1597, 1473, 1361, 1323, 1175, 1107, 1094, 1008, 904, 828, 718 and 704 cm⁻¹; $\delta_{\rm H}$ (270 MHz) 7.45 (1H, dd, J 5.5 and 1.5 Hz, H-4), 6.10 (1H, dd, J 5.5 and 2.0 Hz, H-3), 5.03 (1H, ddt, J 7.0, 5.5 and 1.5 Hz, H-5), 1.75-1.18 (20H, m, H-6 to H-15) and 0.87 (3H, t, J 6.0 Hz, H-16); m/z (EI) 238 [M]+, 178, 167 [M-C₅H₁₁]+, 165, 151, 140 [M+H-C₇H₁₅]+, 125 [M-C₈H₁₇]+, 122, 111 [M-C₉H₁₉]+, 97 [M-C₁₀H₂₁]+, 84 [M+H-C₁₁H₂₃]+, 57, 55, 43, 41 (Found: [M]+, 238.1926. C₁₅H₂₆O₂ requires [M]+, 238.1933). #### Preparation of 5-isopropyl-2(5H)-furanone (14b). This was prepared analogously to 5-undecyl-2(5*H*)-furanone on a 0.522 mmol scale starting from 5-isopropyl-2-oxo-4-(4-tolylsulfonyl)tetrahydrofuran (**13b**) to give, after chromatography (50% ether–petrol), 5-isopropyl-2(5*H*)-furanone ¹⁶ (**14b**) (57.0 mg, 87%) as a colourless oil; R_f 0.35, 70% ether–petrol; v_{max} (film) 2965, 2930, 1758, 1600, 1466, 1295, 1164, 1129, 1092, 1033, 994, 914, 891, 833 and 814 cm⁻¹; δ_H (270 MHz) 7.44 (1H, dd, J 6.0 and 1.5 Hz, H-4), 6.12 (1H, dd, J 6.0 and 2.0 Hz, H-3), 4.94 (1H, dt, J 6.0 and 2.0 Hz, H-5), 2.01 (1H, octet, J 6.0 Hz, H-6) and 1.00 (6H, d, J 6.0 Hz, H-7); m/z (EI) 126 [M]+, 111 [M-Me]+, 109, 97 [M-C₂H₅]+, 91, 84 [M+H-*i*-Pr]+, 71, 57, 55, 43, 41 (Found: [M]+, 126.0681. C₇H₁₀O₂ requires [M]+, 126.0681). #### Preparation of 5-cyclohexyl-2(5H)-furanone (14c), This was prepared analogously to 5-undecyl-2(5H)-furanone on a 0.434 mmol scale starting from 5-cyclohexyl-2-oxo-4-(4-tolylsulfonyl)tetrahydrofuran (13c) to give, after chromatography (40% ether–petrol), 5-cyclohexyl-2(5H)-furanone¹⁷ (14c) (68.8 mg, 95%) as a colourless solid; mp 38-39°C, R_f 0.52, 70% ether–petrol; v_{max} (CH₂Cl₂) 2923, 2856, 2335, 1745, 1600, 1557, 1450, 1332, 1170, 1114, 1034, 979, 910 and 831 cm⁻¹; δ_H (270 MHz) 7.47 (1H, dd, J 5.5 and 1.5 Hz, H-4), 6.11 (1H, dd, J 5.5 and 2.0 Hz, H-3), 4.84 (1H, dt, J 5.5 and 1.5 Hz, H-5), 1.84-1.50 (7H, m, 2 x H-6, H-7 and H-11 and 1 x H-8 and H-10) and 1.35-1.01 (4H, m, 2 x H-9 and 1 x H-8 and H-10); m/z (EI) 166 [M]+, 145, 124 [M-C₃H₆]+, 111 [M+H-C₄H₈]+, 97 [M+H-C₅H₁₀]+, 84 [M+H-C₆H₁₁]+, 55, 41 (Found: C, 72.12; H, 8.41. C_{10} H₁₄O₂ requires C, 72.26; H, 8.49%). ## Preparation of 5-t-butyl-2(5H)-furanone (14d). This was prepared analogously to 5-undecyl-2(5*H*)-furanone on a 1.23 mmol scale starting from 5-*t*-butyl-2-oxo-4-(4-tolylsulfonyl)tetrahydrofuran (**13d**) to give, after chromatography (40% ether–petrol), 5-*t*-butyl-2(5*H*)-furanone¹⁸ (**14d**) (0.161 g, 93%) as a colourless solid; mp 58-59°C, R_f 0.42, 70% ether–petrol; v_{max} (CH₂Cl₂) 2966, 2873, 1825, 1798, 1753, 1601, 1470, 1369, 1331, 1195, 1172, 1100, 1058, 1011, 993, 912, 887, 830 and 706 cm⁻¹; δ_H (270 MHz) 7.45 (1H, d, J 5.5 Hz, H-4), 6.16 (1H, dd, J 5.5 and 1.5 Hz, H-3), 4.71 (1H, d, J 1.5 Hz, H-5) and 0.99 (9H, s, *t*-Bu); m/z (EI) 140 [M]+, 125 [M-Me]+, 97 [M-C₃H₇]+, 84 [M-*t*-Bu], 57, 41, 29 (Found: C, 68.41; H, 8.63. $C_8H_{12}O_2$ requires C, 68.55; H, 8.63%). ### Preparation of (E,E)-5-(5,7-nonadienyl)-2(5H)-furanone (14e). This was prepared analogously to 5-undecyl-2(5H)-furanone on a 1.25 mmol scale starting from (E,E)-5-(5,7-nonadienyl)-2-oxo-4-(4-tolylsulfonyl)tetrahydrofuran (**13e**) to give, after chromatography (50% etherpetrol), (E,E)-5-(5,7-nonadienyl)-2(5H)-furanone (**14e**) (0.235 g, 91%) as a colourless oil; R_f 0.38, 70% ether-petrol; v_{max} (film) 2930, 2857, 1755, 1601, 1441, 1331, 1163, 1104, 990, 818 and 705 cm⁻¹; δ_H (270 MHz) 7.42 (1H, dd, J 6.0 and 1.5 Hz, H-4), 6.01 (1H, dd, J 6.0 and 2.0 Hz, H-3), 6.00-5.87 (2H, m, H-6' and H-7'), 5.56-5.40 (2H, m, H-5' and H-8'), 4.97 (1H, td, J 3.7 and 1.7 Hz, H-5), 2.12-1.97 (2H, m, H-1'), 1.78-1.46 (5H, m, H-2' and H-9') and 1.44-1.20 (4H, m, H-3' and H-4'); m/z (EI) 206 [M]+, 177 [M+H-C₂H₄]+, 161, 151, 107, 93, 81, 79, 67, 41 (Found: C, 75.94; H, 8.95. C₁₃H₁₈O₂ requires C, 75.69; H, 8.79%). ### Preparation of 5-benzyloxymethyl-2(5H)-furanone (14f). This was prepared analogously to 5-undecyl-2(5H)-furanone on a 0.345 mmol scale starting from 5-benzyloxymethyl-2-oxo-4-(4-tolylsulfonyl)tetrahydrofuran (13f) to give, after chromatography (50% etherpetrol), 5-benzyloxymethyl-2(5H)-furanone¹⁹ (14f) (61.5 mg, 93%) as a colourless oil; R_f 0.31, 70% etherpetrol; ν_{max} (film) 2863, 1751, 1601, 1493, 1449, 1362, 1328, 1263, 1205, 1161, 1127, 1099, 1027, 955, 922, 890, 866, 818, 742, 699 and 675 cm⁻¹; δ_{H} (270 MHz) 7.49 (1H, dd, J 6.0 and 1.5 Hz, H-4), 7.40-7.25 (5H, m, Ph), 6.17 (1H, dd, J 6.0 and 2.0 Hz, H-3), 5.17 (1H, tt, J 5.0 and 2.0 Hz, H-5), 4.57 (2H, s, CH₂Ph), 3.74 (1H, dd, J 10.5 and 5.5 Hz, H-1') and 3.67 (1H, dd, J 10.5 and 5.0 Hz, H-1'); m/z (EI) 204 [M]⁺, 174, 160 [M-CO₂]⁺, 149, 128, 121, 115, 108 [BnOH]⁺, 107 [BnO]⁺, 105, 98 [M+H-OBn]⁺, 97 [M-OBn]⁺, 77 [C₆H₅]⁺ (Found: [M]⁺, 204.0786). #### Preparation of 5-[2-benzyloxyethyl]-2(5H)-furanone (14g). This was prepared analogously to 5-undecyl-2(5*H*)-furanone on a 1.49 mmol scale starting from 5-[2-benzyloxyethyl]-2-oxo-4-(4-tolylsulfonyl)tetrahydrofuran (**13g**) to give, after chromatography (60% etherpetrol), 5-[2-benzyloxyethyl]-2(5*H*)-furanone (**14g**) (0.294 g, 90%) as a colourless oil, identical in every way to material produced in the preparation of the starting material **13g** described above. ### Preparation of 5-(5-t-butyldimethylsilyloxypentyl)-2(5H)-furanone (14h). This was prepared analogously to 5-undecyl-2(5H)-furanone on a 0.248 mmol scale starting from 5-(5-t-butyldimethylsilyloxypentyl)-2-oxo-4-(4-tolylsulfonyl)tetrahydrofuran (13h) to give, after chromatography (40% ether–petrol), 5-[5-t-butyldimethylsilyloxypentyl]-2(5H)-furanone (14h) (66.3 mg, 94%) as a colourless oil; R_f 0.53, 70% ether–petrol; v_{max} (film) 3094, 2930, 2858, 2316, 1758, 1601, 1542, 1465, 1385, 1330, 1254, 1161, 1101, 1026, 915, 894, 836, 776, 705 and 661 cm⁻¹; δ _H (270 MHz) 7.44 (1H, dd, J 6.0 and 1.5 Hz, H-4), 6.11 (1H, dd, J 6.0 and 2.0 Hz, H-3), 5.03 (1H, tdd, J 7.5, 5.5 and 1.5 Hz, H-5), 3.60 (2H, t, J 6.0 Hz, H-5'), 1.77-1.21 (8H, m, H-1' to H-4'), 0.89 (9H, s, t-Bu) and 0.04 (6H, s, MeSi); m/z (EI) 284 [M]+, 227 [M-t-Bu]+, 209, 199, 157, 135, 107, 101, 75, 73, 55 (Found: [M-t-Bu]+, 227.1103. C1t16H2t8O3Si requires [M-t-Bu]+, 227.1103). #### Preparation of (E)-5-propenyl-2(3H)-furanone (14i). This was prepared analogously to 5-undecyl-2(5*H*)-furanone on a 0.515 mmol scale starting from (*E*)-2-oxo-5-propenyl-4-(4-tolylsulfonyl)tetrahydrofuran (**13i**) to give, after chromatography (40% ether–petrol), 5-propenyl-2(3*H*)-furanone²⁰ (**14i**) (62.2 mg, 97%) as a colourless oil; R_f 0.58, 70% ether–petrol; v_{max} (film) 2925, 2855, 1737, 1633, 1459, 1378, 1262, 1124, 801 and 741 cm⁻¹; δ_H (270 MHz) 6.20 (1H, dq, J 15.0 and 7.0 Hz, H-2'), 5.91 (1H, d, J 15.0 Hz, H-1'), 5.10 (1H, t, J 0.5 Hz, H-4), 3.27 (2H, br s, H-3) and 1.84 (3H, d, J 7.0 Hz, H-3'); m/z (EI) 124 [M]⁺, 102, 83 [M-C₃H₅]⁺, 81, 75, 73, 69, 55, 32 (Found: [M]⁺, 124.0524. C₇H₈O₂ requires [M]⁺, 124.0524). #### REFERENCES AND NOTES - 1. Simpkins, N. S. Sulphones in Organic Synthesis; Pergamon: Oxford 1993. For a review of the chemistry of vinylic sulfones, See: Simpkins, N. S. Tetrahedron 1990, 46, 6951. - 2. Baldwin, J. E. J. Chem. Soc., Chem. Commun. 1976, 734. - Craig, D.; Smith, A. M. Tetrahedron Lett. 1992, 33, 695; Craig, D.; Ikin, N. J.; Mathews, N.; Smith, A. M. Tetrahedron Lett. 1995, 36, 7531. - 4. For studies on related cyclic systems, see: Kim, S. H.; Jin, Z. D.; Fuchs, P. L. Tetrahedron Lett. 1995, 36, 4537; Jin, Z. D.; Fuchs, P. L. J. Am. Chem. Soc. 1995, 117, 3022. - (i) Meyers, A. I.; Spohn, R. F. J. Org. Chem. 1985, 50, 4872; (ii) Tanaka, K.; Wakita, H.; Ioda, H.; Kuji, A. Chem. Lett. 1984, 1359; (iii) Dziadulewicz, E.; Hodgson, D.; Gallagher, T. J. Chem. Soc.' Perkin Trans 1 1988, 3367; (iv) Najera, C.; Yus, M. J. Org. Chem. 1988, 53, 4708; (v) Carretero, J. C.; De Lombaert, S.; Ghosez, L. Tetrahedron Lett. 1987, 28, 2135. - 6. For a preliminary account of this work, see: Craig, D.; Etheridge, C. J.; Smith, A. M. *Tetrahedron Lett.* **1992**, *33*, 7445. - 7. For an analogous one-pot method for the preparation of vinylic sulfones, see: Lee, J. W.; Oh, D. Y. Synth. Commun. 1989, 19, 2209; we thank a referee for bringing this work to our attention. For
related methodology applied to the synthesis of vinylic sulfoxides and sulfoximines, see respectively: Craig, D.; Daniels, K.; Marsh, A.; Rainford, D.; Smith, A. M. Synlett 1990, 531, and Craig. D.; Geach, N. J. Synlett 1992, 299. - 8. Mandai, T.; Moriyama, T.; Nakayama, Y.; Sugino, K.; Kawada, M.; Otera, J. Tetrahedron Lett. 1984, 25, 5913. - We presume that the sulfone oxygen atoms rather than the α-carbon atom are in close proximity with the lithium counter-ion. See: Gaïs, H.-J.; Vollhardt, J.; Hellmann, G.; Paulus, H.; Lindner, H. J. Tetrahedron Lett. 1988, 29, 1259. - See following paper. Preliminary communication: Craig, D.; Etheridge, C. J. Tetrahedron Lett. 1993, 34, 7487. - 11. Perrin, D. D.; Armarego, W. L. F. *Purification of Laboratory Chemicals*, 3rd edn.; Pergamon: Oxford, 1988. - 2-Benzyloxyethanal has been prepared using a variety of methods. See: (i) Palfray, S. Bull. Soc. Chim. Fr. 1937, 5, 950; Shiao, M.-J.; Yang, C.-Y.; Lee, S.-H.; Wu, T.-C. Synth. Commun. 1988, 18, 359 (oxidative cleavage of 3-benzyloxy-1,2-propanediol); (ii) Arndt, H. C.; Carroll, S. A. Synthesis 1979; 202 (OsO4-NaIO4-mediated cleavage of allyl benzyl ether); (iii) Danishefsky, S. J.; DeNinno, M. P. J. Org. Chem. 1986, 51, 2615 (ozone addition to benzyl vinyl ether followed by Zn-mediated reduction); (iv) Kobayashi, Y.; Ito, Y.; Terashima, S. Tetrahedron 1992, 48; 55 (DIBAL-H-mediated reduction of methyl 2-benzyloxyacetate); (v) Parry, R. J.; Naidu, M. V. J. Am. Chem. Soc. 1982, 104, 3217 (activated DMSO-mediated oxidation of 2-benzyloxyethanol); (vi) Jones, K.; Storey, J. M. D. Tetrahedron 1993, 49, 4901-4906 (ozonolytic cleavage of (Z)-1,4-bis(benzyloxy)-2-butene); (vii) Garner, P.; Park, J. M. Synth. Commun. 1987, 17, 189 (hydrolysis-oxidative cleavage of syn-1,2-bis(benzyloxymethyl)oxirane. - 13. Craig, D.; Fischer, D. A.; Kemal, Ö.; Marsh, Plessner, T.; Slawin, A. M. Z.; Williams, D. J. Tetrahedron 1991, 47, 3095. - 14. Cid, P.; de March, P.; Figueredo, M.; Font, J.; Milán, S.; Soria, A.; Virgili, A. Tetrahedron 1993, 49, 3857. - 15. Pohmakotr, M.; Jarupan, P. Tetrahedron Lett. 1985, 26, 2253. - 16. Stork, G.; Mook, R. Jr.; Biller, S. A.; Rychnovsky, S. D. J. Am. Chem. Soc. 1983, 105, 3741. - 17. Knochel, P.; Rao, C. J. Tetrahedron 1993, 49, 29. - 18. Pecunioso, A.; Galoppini, E.; Menicagli, R. Tetrahedron 1990, 46, 7497. - 19. Takano, S.; Setoh, M.; Yamada, O.; Ogasawara, K. Synthesis 1993, 1253. - 20. Alexandre, C.; Rouessac, F.; Tabti, B. Tetrahedron Lett. 1985, 26, 5453. (Received in UK 12 September 1996; accepted 10 October 1996)